
COMPRESSION OF RAW GENOMIC DATA

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL

ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Shubham Chandak

May 2021

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/yx427br7566

© 2021 by Shubham Chandak. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/yx427br7566

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Tsachy Weissman, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Hanlee Ji

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Mary Wootters

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

With the rapid advances in genomic sequencing, the amount of genomic data being

produced is growing exponentially. Several large scale sequencing projects for humans

and other species are expected to further increase the volume of this data. While the

initial progress was led by second generation high-throughput sequencers such as Illu-

mina, more recently there has been increasing interest in third generation sequencers

like Oxford Nanopore that enable real-time and portable sequencing of long reads. In

this context, compression techniques play a crucial role in enabling efficient storage

and transfer of this data. Unfortunately, the traditional general-purpose compressors

like Gzip are unable to fully exploit the inherent redundancy in this data. Further-

more, in many cases the data is noisy, and it is possible to deploy lossy compression

algorithms that can reduce the storage space without adverse impacts on the data

quality for downstream analysis.

This thesis presents two specialized compressors for genomic data, focusing on raw

genomic data which consists of sequencing reads (FASTQ format) as well as raw signal

data produced by nanopore sequencing (FAST5 format). We first describe SPRING,

which is an efficient compressor for unaligned single and paired-end genomic reads,

supporting various lossless and lossy compression modes. Next, we discuss lossy

compression of nanopore raw signal data using LFZip, which is a general-purpose

lossy compressor for time series and sensor data. We also discuss the evaluation of

the impact of lossy compression on the performance of downstream applications like

basecalling, consensus and methylation calling.

iv

Acknowledgements

I have had the great pleasure of being part of the Stanford community during my

PhD, where I have grown so much, both at a technical and a personal level. Firstly,

I wish to thank my advisor Tsachy Weissman for his incredible support throughout

my stay at Stanford. He has been an exceptional mentor in research and in life,

helping me discover new research opportunities and open problems, and broadening

my horizons through challenging and exciting organizational, mentorship, outreach,

and teaching assignments. I have always been able to rely on him as an advisor and

a friend, and I still wonder at my great fortune of becoming part of his group.

I would like to thank my thesis reading committee members Hanlee Ji and Mary

Wootters. Hanlee has been an outstanding co-advisor, introducing me to the field

of DNA storage and providing such great guidance throughout the project. I learnt

a lot from Hanlee and Mary about their respective fields, and about the value of

interdisciplinary collaboration. I also wish to thank James Zou and Ayfer Özgür for

being part of my exam committee and for providing useful feedback on my research.

I extend my gratitude to all my teachers and professors at school, coaching institutes,

at IIT Bombay, and at Stanford.

I want to thank the Electrical Engineering department for their help with the

administrative support that enabled me to focus on my research.

I am thankful to all my lab members and collaborators over the years: Kedar, Billy,

Pulkit, Jay, Idoia, Mikel, Qingxi, Yifan, Mohit, Jan, Reyna, Chengtao, Roshan, Matt,

Srivatsan, Peter, Patrick, Dmitri, Joachim, Irena, Meltem, Jiantao, Yanjun, Yihui,

Lele, Ariana, Noah and Berivan. It has been fun interacting with such excellent

researchers. I extend my special thanks to Kedar for being a great friend and mentor

v

for so many of my projects, and for making me feel at home in the group right from

my first day at Stanford.

I wish to thank my friends who have been by my side through thick and thin. My

conversations with them have helped me stay grounded through this journey. Finally,

my gratitude for my extended family, my brother Siddharth, and my parents cannot

be expressed in words, all my achievements are built upon their love and their efforts.

Thank you!

vi

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

2 SPRING: a next-generation compressor for FASTQ data 4

2.1 Introduction . 4

2.2 Methods . 7

2.2.1 FASTQ files . 7

2.2.2 SPRING . 7

2.3 Main results . 16

2.4 Additional results . 22

2.4.1 Field-wise compression results 22

2.4.2 Comparison with alignment + SAM compression 23

2.4.3 Long read compression . 24

2.4.4 Decompressing subset of reads 25

2.4.5 Results for variable length short reads 25

2.4.6 Quality value lossy compression modes 26

2.4.7 Impact of number of threads 27

2.4.8 Impact of block size . 27

2.4.9 Impact of read reordering on ID compression 28

2.4.10 Improvements in reordering stage 29

2.5 Conclusions . 30

vii

3 LFZip: Lossy compression of multivariate floating-point time series

data via improved prediction 31

3.1 Introduction . 31

3.1.1 Our Contributions . 32

3.1.2 Previous Work . 32

3.2 Methods . 34

3.2.1 Encoding and Decoding Framework 34

3.2.2 Predictors . 35

3.3 Results . 37

3.3.1 Experimental setup . 37

3.3.2 Results for LFZip (NLMS) for univariate time series data . . . 38

3.3.3 Results for LFZip (NLMS) for multivariate time series data . . 40

3.3.4 LFZip (NLMS) ablation experiments 40

3.3.5 Results for LFZip (NN) for univariate time series data 42

3.3.6 Computational requirements 43

3.4 Conclusion . 43

4 Impact of lossy compression of nanopore raw signal data on base-

calling and consensus accuracy 44

4.1 Introduction . 44

4.2 Background . 47

4.2.1 Nanopore sequencing and basecalling 47

4.2.2 Assembly, consensus and polishing 48

4.2.3 Methylation calling . 49

4.2.4 Lossy compression . 49

4.3 Experiments . 50

4.3.1 Datasets . 51

4.3.2 Lossy compression . 53

4.3.3 Basecalling and consensus . 53

4.3.4 Evaluation metrics . 54

4.3.5 Methylation calling and evaluation 54

viii

4.4 Results and discussion . 55

4.4.1 Basecalling accuracy . 56

4.4.2 Consensus accuracy . 60

4.4.3 Methylation calling accuracy 64

4.4.4 Time and memory usage . 64

4.5 Conclusions and future work . 67

5 Concluding Remarks 69

Bibliography 70

ix

List of Tables

2.1 Short read datasets used for evaluation. PE denotes paired-end, SE

denotes single-end. For SRR327342, the read length of the first read

in each pair is 63, and that of the second read is 75. Instructions for

obtaining these datasets are available on GitHub. 17

2.2 Sizes in MB for lossless compression. FaStore wasn’t run on S. cere-

visiae since it does not support variable length reads. On E. coli,

FaStore exited with a segmentation fault. Best results are boldfaced. 18

2.3 Sizes in MB for recommended lossy compression. FaStore wasn’t run

on S. cerevisiae since it does not support variable length reads. On E.

coli, FaStore exited with a segmentation fault. Best results are boldfaced. 18

2.4 Compression times. All tools were run with 8 threads. 19

2.5 Compression memory (RAM) in GB. All tools were run with 8 threads. 20

2.6 Decompression times. All tools were run with 8 threads. 21

2.7 Decompression memory (RAM) in GB. All tools were run with 8 threads. 21

2.8 Sizes (in MB) of individual fields for lossless compression. 22

2.9 Sizes (in MB) of individual fields for recommended lossy compression. 23

2.10 Long read datasets used for evaluation. Both datasets are single end. 24

2.11 Sizes in MB for long read compression. 24

2.12 Time required to decompress subset of read pairs for H. sapiens 3.

Last row represents decompression of entire file. 25

2.13 Compression sizes in MB for the variable-length NovaSeq datasets.

Only tools supporting variable length reads were tested. 26

x

2.14 Sizes in MB for different quality value compression modes for H. sapi-

ens 2. 26

2.15 Impact of number of threads on compressed size and time/memory

consumption for lossless compression of H. sapiens 3. 27

2.16 Impact of block size on compressed size and time/memory consumption

for lossless compression of H. sapiens 3. 28

2.17 Impact of using -r flag on read and read identifier compression for H.

sapiens 3. Sizes are in MB. 28

2.18 Impact of bidirectional search on compressed size and time/memory

consumption for lossless compression of H. sapiens 3. 29

2.19 Impact of early stopping on compressed size and time/memory con-

sumption for lossless compression of H. sapiens 4. 29

3.1 Datasets used for evaluation. 37

3.2 Compression ratios for CA, SZ and LFZip (NLMS). Best results are

boldfaced. 38

3.3 LFZip (NLMS) compression ratios for multivariate time series (i) when

each variable is compressed independently and (ii) when compressed

together. 40

3.4 Compression ratios for test datasets for SZ, LFZip (NLMS) and LFZip

(NN). Best results are boldfaced. 42

4.1 Datasets used for analysis. The E. coli dataset was obtained from

http://albertsenlab.org/we-ar10-3-pretty-close-now/. N50 is

a statistical measure of average length of the reads. The uncompressed

size column refers to storing the raw signal in the default representation

using 16 bits/signal value. The first three datasets (bacterial) were

used for basecalling and consensus accuracy evaluation, while the last

dataset (low-coverage human dataset from a single flowcell) was used

for basecalling and per-read methylation calling accuracy evaluation. 51

xi

http://albertsenlab.org/we-ar10-3-pretty-close-now/

4.2 Time and peak memory usage for compression+decompression of the S.

aureus dataset for different compressors and maxerror parameters. The

lossless compression time only includes the compression time. The last

column shows the average number of raw signal samples handled per

second, where the total number of raw signal samples for this dataset

is roughly 2.43 billion. 65

4.3 Time and peak memory usage for Guppy (high accuracy) basecalling of

the S. aureus dataset for different compressors and maxerror parameters. 66

4.4 Time and peak memory usage for Flye assembly of the S. aureus

dataset for different compressors and maxerror parameters. 66

4.5 Time and peak memory usage for Rebaler consensus of the S. aureus

dataset for different compressors and maxerror parameters. 66

4.6 Time and peak memory usage for Medaka polishing of the S. aureus

dataset for different compressors and maxerror parameters. 67

xii

List of Figures

2.1 Illustration of short paired-end read sequencing. 5

2.2 Paired-end FASTQ files in ERP001775 dataset. 8

2.3 Compression flow for SPRING. 8

2.4 Reordering of paired reads while preserving the pairing information. . 8

3.1 Encoder and decoder framework in LFZip. 35

3.2 Snapshots of the datasets used for evaluation. 39

3.3 Compression ratio for ppg dataset as the NLMS window size is varied. 41

4.1 Illustration of nanopore sequencing, basecalling and consensus. The

bottom-left panel shows instances of basecalling and consensus errors,

where the consensus process is able to correct random errors but not

systematic errors. 45

4.2 Flowchart showing the experimental procedure. (a) The raw data was

compressed with both lossless and lossy compression tools, (b) the

original and lossily compressed data was then basecalled with three

basecalling tools. Finally, the basecalled data and its subsampled ver-

sions were assembled and the assembly (consensus) was polished using

a three-step pipeline (1. Flye, 2. Rebaler, 3. Medaka). The trade-

off between compressed size and basecalling/consensus accuracy was

studied. For one dataset, methylation calling and accuracy evaluation

was performed using Megalodon. 48

xiii

4.3 Compressed size for lossy compression with LFZip and SZ for the S. au-

reus dataset as a function of the maxerror parameter. The compressed

sizes are shown relative to the VBZ lossless compression size. 57

4.4 Basecalling accuracy vs. compressed size for (a) S. aureus, (b) K. pneu-

moniae, (c) E. coli, and (d) H. sapiens datasets. The results are dis-

played for the losslessly compressed data and the lossily compressed

versions with LFZip and SZ (with maxerror 1 to 10) for the four base-

callers. The compressed sizes are shown relative to the VBZ lossless

compression size. Bonito was not run on E. coli due to lack of support

for the R10.3 pore. 58

4.5 Consensus accuracy vs. compressed size for (a) S. aureus, (b) K. pneu-

moniae and (c) E. coli datasets. The results are displayed for the

polished Medaka assembly for the losslessly compressed data and the

lossily compressed versions with LFZip and SZ (with maxerror 1 to

10) for the four basecallers. The compressed sizes are shown relative

to the VBZ lossless compression size. Bonito and guppy fast were not

used on E. coli due to lack of corresponding Medaka models for the

R10.3 pore. 59

4.6 (a) Consensus accuracy vs. compressed size after each assembly step

(Flye, Rebaler, Medaka) for the S. aureus dataset basecalled with

guppy hac. (b) Consensus accuracy (Medaka polished) vs. compressed

size for subsampled versions (original, 2X subsampled, 4X subsampled,

8X subsampled) of the S. aureus dataset basecalled with guppy hac.

The results are displayed for the losslessly compressed data and the

lossily compressed versions with LFZip and SZ (with maxerror 1 to

10). The compressed sizes are shown relative to the VBZ lossless com-

pression size. 61

xiv

4.7 Consensus accuracy (Medaka polished) for homopolymer sequences of

length 5 to 8 for the S. aureus dataset basecalled with guppy hac. The

results are displayed for the losslessly compressed data and the lossily

compressed versions with LFZip and SZ (with maxerror 1 to 10). The

compressed sizes are shown relative to the VBZ lossless compression size. 62

4.8 Precision, recall and AUC (area under ROC curve) for NA12878 CpG

methylation calling using Megalodon. The metrics are computed for

per-read methylation calls. For the precision and recall, a probability

threshold of 0.5 was used for the predicted methylation probabilities.

The results are displayed for the losslessly compressed data and the

lossily compressed versions with LFZip and SZ (with maxerror 1 to

10). The compressed sizes are shown relative to the VBZ lossless com-

pression size. 63

xv

Chapter 1

Introduction

Our genome is a big part of our lives: it is the primary hereditary material which we

inherit from our parents, and it affects our physical characteristics and susceptibility

to various diseases. At a basic level, the genome is just a sequence of DNA bases,

with each base being one of the four possibilities {A,C,G, T}. The DNA occurs in a

double-stranded form, with the two strands being complementary to each other. The

human genome has length around 3 billion bases spread across 23 chromosomes, and

we have two copies of the genome, one from each parent.

Given the importance of the genome to human health and the understanding of

life in general, there has been interest in methods to study the genome. Genome se-

quencing aims at reading the sequence of bases constituting the genome, often through

shorter noisy substrings of the genome called reads. The genome is fragmented into

shorter pieces which are read using a sequencer. Typically, a single position of the

genome is sequenced as part of several reads, that allows us to gather useful informa-

tion despite the short length of the reads and the noise in the sequencing process.

Over the past two decades, the cost of sequencing has been dropping rapidly

leading to several large-scale genome sequencing projects, focusing on both humans

and on other species. This has led to an explosion of data, with an estimated storage

requirement of 40 exabytes predicted over the next decade (1 exabyte = 1 billion

gigabytes). Thus, efficient compression of this data is critical for enabling its storage,

transfer, and analysis. Given the redundancy between the reads, there is significant

1

CHAPTER 1. INTRODUCTION 2

potential for savings if appropriate data compression techniques are used. However, in

practice, general-purpose compressors like Gzip are often used, which do not achieve

the best results for genomic data with its unique statistical properties. In addition,

the data is frequently noisy and further storage reduction can be achieved by using

lossy compression, often without a negative impact on the data quality.

This thesis introduces specialized methods for effective compression of genomic

data, with special focus on the raw data obtained from the sequencer. While typical

applications ultimately process the raw data to obtain more interpretable results, the

storage of raw data can become the bottleneck due to its large size. In addition, the

raw data needs to be retained for long periods of time for regulatory reasons and to

enable reanalysis as better analysis tools become available.

The first part of the thesis, presented in Chapter 2, concerns SPRING, which

is a compressor for genomic sequencing reads focusing on short-read technologies.

We discuss the algorithm in detail and analyze its performance in different modes

and for different datasets. Next, Chapter 3 covers LFZip which is a general-purpose

lossy compressor for time-series data with applications ranging from sensor arrays

to genomic data. We discuss the algorithm inspired by a classic lossy compression

framework and discuss the results across several real-life datasets. Finally, Chapter 4

applies LFZip to raw current data from nanopore sequencing. Nanopore sequencing

has gained a lot of traction over the past five years and has several advantages over

the older short-read technologies. We study the space savings achievable by using

the lossy LFZip compression for this data, and carefully analyze the impact of lossy

compression on the performance of downstream applications.

Parts of this thesis have been previously published in the following papers:

1. S. Chandak, K. Tatwawadi, I. Ochoa, M. Hernaez and T. Weissman; SPRING:

A next-generation compressor for FASTQ data, Bioinformatics, Volume 35,

Issue 15, 1 August 2019, Pages 2674–2676. [1]

2. S. Chandak, K. Tatwawadi, C. Wen, L. Wang, J.A. Ojea and T. Weissman;

LFZip: Lossy compression of multivariate floating-point time series data via

improved prediction, 2020 Data Compression Conference (DCC), Snowbird,

CHAPTER 1. INTRODUCTION 3

UT, USA, 2020, pp. 342-351. [2]

3. S. Chandak, K. Tatwawadi, S. Sridhar and T. Weissman; Impact of lossy com-

pression of nanopore raw signal data on basecalling and consensus accuracy,

Bioinformatics, Volume 36, Issue 22-23, 1 December 2020, Pages 5313–5321.

[3]

Chapter 2

SPRING: a next-generation

compressor for FASTQ data

2.1 Introduction

There has been a tremendous increase in the amount of genomic data produced in the

past few years, mainly driven by the improvements in High-Throughput Sequencing

(HTS) technologies and the reduced cost of sequencing a genome. A single genome

sequencing experiment on humans typically results in hundreds of millions of short

reads (of length 100-150bp), which are (possibly corrupted) substrings of the same un-

derlying genome sequence. This raw sequencing data is typically stored in the FASTQ

format, which consists of the reads along with the quality values which indicate the

confidence in the read sequence, and read identifiers which consist of metadata related

to the sequencing process. In most cases, the reads are sequenced in pairs from short

fragments of the genome, resulting in paired-end FASTQ files. See Figure 2.1 for

an illustration of short paired-end read sequencing. A typical FASTQ dataset for a

human genome sequencing experiment requires hundreds of GBs of storage space (for

a typical sequencing coverage of 30x). Due to the huge sizes involved, compression of

the FASTQ files is of utmost importance for their storage and distribution.

There is significant amount of recent work on FASTQ compression [4], including

SCALCE [5], Fqzcomp [6], DSRC 2 [7] and FaStore [8]. Since the reads are substrings

4

CHAPTER 2. SPRING 5

Figure 2.1: Illustration of short paired-end read sequencing.

of the underlying genome, there is much redundancy to be exploited for compression.

Specialized compressors, which explicitly utilize the structure present in the reads,

can achieve a compression gain of more than 10x as compared to generic universal

compressors such as Gzip [4]. The quality values, on the other hand, have less struc-

ture, and thus can take up a more significant fraction of the storage space in the

compressed domain. Recent work [8, 9] has shown that the quality values can be

lossily compressed without adversely affecting the performance of variant calling, one

of the most widely used downstream application in practice. Moreover, newer tech-

nologies such as Illumina’s Novaseq are using quality values with fewer levels (4 levels

instead of the previous 8 or 40 levels), hence supporting the claim that the precision

in the quality values can be reduced with no impact on variant calling performance.

Although there has been a lot of work on designing FASTQ compressors, most of

them lack in support of one or more crucial properties, such as support for variable

length reads [8], scalability to high coverage datasets, pairing-preserving compression

[7] and lossless compression [5]. Partly due to these factors, Gzip is still the prevalent

FASTQ compressor, even though it provides worse compression ratios [4].

In this chapter, we present the next-generation compressor SPRING, which sup-

ports all the crucial properties, while achieving significantly better compression as

compared with state-of-the-art FASTQ compressors. SPRING is also eminently prac-

tical in terms of its memory/time requirements, and supports selective access to the

CHAPTER 2. SPRING 6

compressed data.

SPRING supports the following recommended modes of FASTQ compression:

1. Lossless mode (default): In this mode, the FASTQ file is compressed so that

it can be exactly reconstructed, i.e., the reads, quality, read identifiers and the

read order information can be perfectly recovered.

2. Recommended lossy mode: In this mode, the information relevant for

most of the genomic applications (such as alignment, assembly, variant call-

ing, etc.) is preserved. This includes the reads along with pairing informa-

tion and binned quality values. The quality values are subjected to the Illu-

mina’s standardized 8-level binning (https://www.illumina.com/documents/

products/whitepapers/whitepaper_datacompression.pdf) before compres-

sion (Novaseq qualities are left unchanged). The read identifiers and the order

of the pairs is discarded (i.e., the decompressed FASTQ file contains the read

pairs in an arbitrary order). The relative ordering of the first and the second

read in each pair is still preserved.

Although we advocate for these default modes, SPRING can be highly customized

based on the user needs, and provides additional capabilities such as custom binning

of quality values using QVZ [10] and binary thresholding.

For short reads (up to 511 bp), the read compression in SPRING is based on

HARC [11], with significant improvements and added support for variable-length

reads. SPRING also supports long read compression, where BSC (https://github.

com/IlyaGrebnov/libbsc/) is used as the read compressor. Furthermore, SPRING

compresses the streams in blocks, allowing for fast decompression of a subset of reads

(random access). More details and results for these features are provided in the

following. SPRING is open-source and available on GitHub at https://github.

com/shubhamchandak94/Spring/.

https://www.illumina.com/documents/products/whitepapers/whitepaper_datacompression.pdf
https://www.illumina.com/documents/products/whitepapers/whitepaper_datacompression.pdf
https://github.com/IlyaGrebnov/libbsc/
https://github.com/IlyaGrebnov/libbsc/
https://github.com/shubhamchandak94/Spring/
https://github.com/shubhamchandak94/Spring/

CHAPTER 2. SPRING 7

2.2 Methods

2.2.1 FASTQ files

The FASTQ format [12] is used to represent data obtained from a sequencing exper-

iment. This data is not aligned to a reference genome and consists of reads, quality

values and read identifiers. Every read and the corresponding metadata is represented

by a block of four lines. The first line is the read identifier, the second line is the

read itself and the fourth line is the quality value for each base in the read. The

third line contains the symbol ‘+’ to separate the read and the quality values. This

line can contain some metadata or comments, but they are rarely used and hence

most compressors (including SPRING) discard them [4]. The read is a string of DNA

symbols (typically A, C, G, T and N, where N represents no call). The quality value

represents the confidence in each base call, encoded in ASCII using the Phred scale

[13]. The read identifiers store various fields related to the sequencing process, such

as lane number, instrument name, etc. For paired-end sequencing, two FASTQ files

are produced, with the ith read in the first file being the pair of the ith read in the

second file. As an example, the first read for the two files in the ERP001775 dataset

is shown in Figure 2.2 (note that the read identifiers for the paired reads differ only

in the last character).

2.2.2 SPRING

Figure 2.3 shows the overall compression flow for SPRING. Before describing the

steps in more detail, we define some terms and discuss certain components:

• BSC - BSC (https://github.com/IlyaGrebnov/libbsc/) is a general-purpose

compressor based on the Burrows-Wheeler Transform (BWT) built for achiev-

ing high compression ratios while being computationally efficient. We use BSC

in a number of places in SPRING, with block length of 64 MB and -p (no

preprocessing) flag activated.

• Read compression - There are two modes for read compression:

https://github.com/IlyaGrebnov/libbsc/

CHAPTER 2. SPRING 8

Figure 2.2: Paired-end FASTQ files in ERP001775 dataset.

Preprocess Reorder
reads

Encode
reads

Paired end
order

encoding

Reorder
and

compress
read

streams

Reorder
and

compress
quality and

ids

Tar

Figure 2.3: Compression flow for SPRING.

Figure 2.4: Reordering of paired reads while preserving the pairing information.

CHAPTER 2. SPRING 9

– Order preserving compression - Compression preserving the order of reads

in the FASTQ file. This is the default mode for SPRING.

– Order non-preserving (pairing only) compression - In this mode, the order

of reads in the FASTQ file is not preserved but the pairing information is

preserved (see Figure 2.4). Single end FASTQ files are arbitrarily reordered

in this mode. Paired end FASTQ files are reordered such that the reads in

file 1 remain in file 1, reads in file 2 remain in file 2, and the paired reads

still remain paired. This mode is activated by the -r flag.

• Quality value compression - SPRING uses BSC for quality value compression

and allows several options for quantization:

– Lossless - default mode.

– QVZ - QVZ [10] models quality values as a first-order Markov process

with position-dependent transition probabilities. This allows QVZ to cap-

ture both the degradation of quality values at the end of the read and

the correlation between the quality values within a read. QVZ first com-

putes statistics for this model and generates quantization codebooks using

a variant of Lloyd-Max algorithm. Note that we use QVZ only for quanti-

zation of quality values, which are then compressed using BSC. SPRING

supports QVZ with mean square error distortion, where the user needs to

specify the desired rate in bits/quality value. It was shown in [9] that an

average rate of 1 bit per quality value retains the performance of variant

calling. This mode is activated by the -q qvz qvz rate flag.

– Illumina binning - SPRING supports Illumina’s standardized 8-level bin-

ning scheme [14] for lossy compression of quality values. The Illumina

binning scheme maps the 40-level quality values to 8 levels by clustering

together similar values. This mode is activated by the -q ill bin flag.

– Binary thresholding - SPRING supports binary quantization of quality

values which was shown in [8] to significantly reduce the compressed size

of quality values without sacrificing variant call accuracy (for high coverage

CHAPTER 2. SPRING 10

datasets). The user needs to provide three parameters: thr, high and low.

Quality values less than thr are quantized to low and quality values greater

than or equal to thr are quantized to high. This mode is activated by the

-q binary thr high low flag.

• Read Identifier Compression - As the read identifiers consist of heterogeneous

but structured data, SPRING uses a token-based approach for their compres-

sion. The read identifiers are split into tokens and each token is encoded sep-

arately. For the numeric tokens, SPRING uses delta encoding if the difference

from the previous value is small, otherwise it stores the token value as it is. For

string type tokens, SPRING uses a special symbol to denote a perfect match

with the previous value, otherwise the full string is stored. Finally these streams

are compressed using an adaptive arithmetic encoder. The read identifier com-

pression in SPRING is based on Samcomp [6] and GeneComp [15].

For paired-end datasets, typically the corresponding identifiers in the two files

differ only in a single character. During the preprocessing stage, we check if

the identifiers have this structure. In that case, identifiers for only one of the

files are compressed and those for the other file are reconstructed during the

decompression.

• Short read mode - This mode supports short reads with read lengths up to 511.

The short read compression in SPRING is based on HARC [11], with added

support for paired end reads and several other improvements (discussed later

in more detail). This mode is optimized for relatively accurate short reads

containing substitution errors and is the default mode for SPRING.

• Long read mode - This mode supports long reads with read lengths up to 4.2

billion. Here we use BSC for read compression. This mode is activated by the

-l flag and is always order preserving. Since the short read mode is designed

for low error rates with most errors being subsitutions, the long read mode is

also recommended for short read datasets with large number of indel errors.

CHAPTER 2. SPRING 11

Preprocess

In the long read mode, the reads, quality values and read identifiers are separated and

compressed in blocks (reads and quality values using BSC, identifiers using specialized

identifier compressor described above). By default, the block length for long reads is

set to 10,000 reads. The read lengths are also stored as 32-bit integers in a separate

stream which is compressed using BSC. Preprocessing is directly followed by the Tar

stage for long reads.

In the order preserving mode, the quality values and read identifiers are com-

pressed in blocks (quality values using BSC, identifiers using specialized identifier

compressor). QVZ quantization is applied before quality compression if the corre-

sponding flag is specified. By default the block length for short reads is set to 256,000

reads (see Section 2.4.8 for impact of block length on compression). The reads are

written to temporary files after separating out the reads containing the character ‘N’.

The reads containing ‘N’ are considered directly in the “Encode reads” stage.

In the order non-preserving mode, the quality values and read identifiers are writ-

ten to temporary files. The reads are handled exactly as in the order preserving

mode.

If the Illumina binning or binary thresholding flag is activated, the qualities are

binned before compression/writing to temporary file.

Reorder reads

This step in read compression is based on HARC [11], with several extensions and

improvements. Here, we will provide a brief overview of the step, more details and

parameters can be found in [11]. In this step, SPRING reorders the reads so that they

are approximately ordered according to their position in the genome. The reordering

is done in an iterative manner: given the current read, SPRING tries to find a read

which matches the prefix or the suffix of the current read with a small Hamming

distance. To do this efficiently, a hash table is used which indexes the reads according

to certain substrings of the read. SPRING makes the following improvements to this

stage:

CHAPTER 2. SPRING 12

• While HARC searched for matching reads in only one direction (matching the

suffix of the current read), SPRING looks for matches in both directions. This

boosts read compression by 5-10% on most datasets (see Section 2.4.10).

• While HARC only supported fixed length reads of maximum length 255, SPRING

adds support to variable length short reads of maximum length 511. For this,

SPRING stores an array containing the read lengths, which is used to ensure

that the Hamming distance between reads of different lengths is computed cor-

rectly.

• We observed that most of the time in the reordering stage is spent on a small

fraction of remaining reads and the attempts to find matches to these reads

usually fails. To save time in this step, SPRING introduces early stopping to

this stage. Each thread maintains the fraction of unmatched reads in the last 1

million reads and stops looking for matches once this fraction crosses a certain

threshold (50% by default). Since this stage is the most time-consuming step in

SPRING compression, early stopping can reduce compression times by as much

as 20% without affecting the compression ratio (see Section 2.4.10).

Encode reads

In this step, the sequence of reordered reads is used to obtain a majority-based refer-

ence sequence. The reference sequence is then used to encode the reordered reads. The

final encoding includes the reference sequence, the positions of the reads in the ref-

erence sequence, and the mismatches of reads with respect to the reference sequence.

An index mapping the reordered reads to their position in the original FASTQ file is

also stored. This step is almost unchanged from HARC [11] and more details can be

found there. The only major addition in SPRING is the support for variable-length

reads of lengths up to 511.

This stage produces a majority-based reference sequence and encoded streams for

reads aligned to the reference. A small fraction of reads usually remains unaligned to

the reference to the reference and are stored separately. However, the encoded streams

do not correspond to the original order of reads in the FASTQ file. Furthermore, the

CHAPTER 2. SPRING 13

reordering and encoding stages from HARC consider the paired end FASTQ files as

a single end FASTQ file obtained by concatenating the two files. Thus, for both the

order preserving and order non-preserving modes, we need to transform these streams

using the information in the index mapping the reordered reads to their position in

the original file. This is done in the next two steps.

Paired end order encoding

This step is used only in the order non-preserving mode. Here we generate a new

ordering of the reads which preserves the pairing information while achieving the

optimal compression. This step generates an index mapping the reordered reads to

their position in the new ordering. The reads in file 1 are kept in the same order as

obtained after the previous stage (Encode reads), i.e., the reads in file 1 are sorted

according to their position in the majority-based reference. This allows us to store the

positions of these reads in the majority-based reference using delta-coding leading to

improved compression. The ordering of the reads in file 2 is automatically determined

by the ordering of reads in file 1 (since pairing information is preserved).

For single end files (in the order non-preserving mode), the reads are kept in

the same order as obtained after the encoding stage (i.e., sorted according to their

position in the majority-based reference).

Reorder and compress read streams

In this step, the final encoded streams are generated and compressed in blocks using

BSC. For this, first the streams generated by the encoding stage are loaded into the

memory. These are then reordered according to the mode. In the order preserving

mode, the streams are ordered according to the original order of reads in the FASTQ

files. In the order non-preserving mode, the streams are ordered according to the

new order generated in the paired end order encoding step. The final streams are

described below:

• seq - stores the majority-based reference sequence. This is packed into a 2

bits/base representation before compression.

CHAPTER 2. SPRING 14

• flag - indicates whether the reads are aligned or not as well as the distance

between them on the reference.

– 0 - Both reads aligned and gap between alignment positions is < 32,767

(for single end datasets, flag 0 means that the read is aligned).

– 1 - Both reads aligned and gap between alignment positions is ≥ 32,767.

– 2 - Both reads unaligned (for single end datasets, flag 2 means that the

read is unaligned).

– 3 - read 1 of pair aligned, read 2 unaligned.

– 4 - read 1 of pair unaligned, read 2 aligned.

• pos - in the order preserving mode, stores the position of the first read of the

pair (and possibly the second read) on the reference using 8 bytes. If flag is 0

or 3, only the position of the first read is stored. If flag is 1, positions of both

the first and the second reads are stored. If flag is 2, nothing is stored.

In the order non-preserving mode, the position of the first read of the pair is

stored as the difference from the first read of the previous pair (except for the

first pair in the block). Note that the difference is always positive because

of the way the new order is defined in the paired end order encoding step.

This difference is stored as a 2 byte unsigned integer as long as it is < 65,535.

Otherwise we store 65,535 using 2 bytes followed by the actual difference using

8 bytes. Storing differences rather than the absolute position allows SPRING

to achieve significantly better compression in the order non-preserving mode.

• pos pair - for paired end datasets, store the gap between the paired reads on the

reference using a 16 bit signed integer when the flag is 0. Since the paired reads

are sequenced from nearby portions of the genome (paired reads are typically

separated by 50-250 bases), they are likely to appear close in the reference.

Using a separate stream for the gap between the paired reads allows us to

exploit this fact.

CHAPTER 2. SPRING 15

• noise - store the noisy bases in the aligned reads with respect to the refer-

ence. The encoding depends on both the base in the reference and in the read,

allowing us to exploit the fact that certain errors are more likely in Illumina

sequencing. For example, the most probable transitions for each reference sym-

bol are encoded as 0, next most probable transitions as 1 and so on. This leads

to more 0’s in the encoded stream leading to better compression. A newline

character separates the noise for consecutive reads.

• noisepos - stores the position of the noisy bases encoded in the noise stream.

These are delta encoded to exploit the fact that most sequencing errors occur

towards the end of the read. The delta coded noise positions are stored as 16

bit unsigned integers.

• RC - store the orientation (forward/reverse) of aligned reads with respect to

the reference. If flag is 0, this does not store the orientation of the second read

in the pair (see RC pair stream).

• RC pair - for paired end datasets, store the relative orientation of the second

read with respect to the first read when the flag is 0. If the paired reads have

opposite orientation, store 0, otherwise store 1. Since the paired end reads have

opposite orientation of the genome, we expect to get mostly 0’s in this stream

and hence this stream is highly compressible.

• unaligned - stores the unaligned reads without any encoding.

• length - store the read lengths as 16 bit unsigned integers.

Reorder and compress quality and ids

This step is used only in the order non-preserving mode. Here the quality and ids

are reordered to match the new ordering of the reads. After reordering, they are

compressed in blocks (as done in preprocess stage for the order preserving mode). To

reduce the memory consumption during reordering, SPRING makes multiple passes

over the quality and ids. In each pass, a subset of quality and ids are loaded into

CHAPTER 2. SPRING 16

memory and these are compressed according to the new ordering. If QVZ is being

used for quality value quantization, it is applied before compression. Note that Il-

lumina binning and binary thresholding of quality values are already applied in the

preprocessing step, so they are not required in this step. In case the qualities and/or

identifiers are not to be preserved, this step simply ignores them.

Tar

All the compressed streams are converted to a tar archive at the end.

Decompression

During decompression, first the seq stream is decompressed (not applicable for long

read mode). Then, multiple threads decompress the blocks in parallel which are then

written to the output files by the master thread. SPRING supports decompression of

a subset of reads by specifying the --decompress-range flag. In this case, the entire

seq stream is decompressed and then only the blocks corresponding to the desired

range of reads are decompressed.

2.3 Main results

The proposed algorithm, SPRING, was tested on a variety of datasets and com-

pared to various algorithms. For lossless compression, we compare SPRING with

pigz (https://zlib.net/pigz/), FaStore [8] and DSRC 2 [7]. pigz (parallelized

Gzip) was chosen as it is currently the standard FASTQ compressor. FaStore does

not preserve the order of the reads and hence is not lossless in general. However, for

these datasets, the original order can be recovered from the read identifiers since they

are sequentially ordered. For the recommended lossy mode, we compare SPRING

with FaStore. The compression script for FaStore was modified so that the informa-

tion retained in this mode is the same for SPRING and FaStore (details on GitHub).

For both modes, we tested both the default and fast mode of FaStore. While sev-

eral tools such as SCALCE [5] and Fqzcomp [6] provide much better compression

https://zlib.net/pigz/

CHAPTER 2. SPRING 17

Dataset
Genome Read

#reads (M) Coverage PE/SE Technology Accession no.
length (Mb) length

E. coli 4.6 301 1.3 85 PE MiSeq SRR1770413
P. aeruginosa 6 100 3.3 50 PE GAIIx SRR554369
S. cerevisiae 12.1 63, 75 30 175 PE GAII SRR327342

T. cacao 350 74 69 15 SE GAIIx SRR870667 2
PhiX 0.0054 100 200 3.7× 106 PE NovaSeq PhiX

Metagenomic - 100 72 - PE HiSeq 2000 ERR532393
H. sapiens 1 3137 100 48.9 1.6 PE GAII SRR062634
H. sapiens 2 3137 101 879 28 PE HiSeq 2000 ERP001775
H. sapiens 3 3137 147 540 25 PE NovaSeq NA12878 Rep 1, Lane 1
H. sapiens 4 3137 147 2173 100 PE NovaSeq NA12878 Rep 1 & 2

Table 2.1: Short read datasets used for evaluation. PE denotes paired-end, SE denotes
single-end. For SRR327342, the read length of the first read in each pair is 63, and
that of the second read is 75. Instructions for obtaining these datasets are available
on GitHub.

than pigz, we decided to test only FaStore and DSRC 2 since they represent the

state-of-the-art in terms of compression ratio and compression speed, respectively [8].

Moreover, the fast mode of FaStore still achieves better compression than the other

tools, while achieving similar or faster compression speed.

All the experiments were run on a server with a 40-core Intel(R) Xeon(R) 2.20

GHz processor, 258 GB of RAM, 7.3 TB disk space and Ubuntu 18.04. All tools were

run with 8 threads. 1 MB denotes 106 bytes and 1 GB denotes 109 bytes throughout

the paper. Instructions for installing and using SPRING and other tools along with

the commands used for the experiments are available on GitHub.

The datasets (listed in Table 2.1) include viral, bacterial, metagenomic, plant

and human sequencing data and cover a range of coverages, Illumina sequencing

technologies, and read lengths. Some of these datasets are part of a compilation by

MPEG HTS compression working group for benchmarking purposes [4]. The human

NovaSeq datasets were obtained from Illumina BaseSpace public data and consisted

of variable-length (≈ 150bp) paired-end reads along with 4-level quality values. These

were trimmed to 147bp as FaStore does not support variable-length reads. Results

for SPRING for the original variable-length datasets are in Section 2.4.5. All the

datasets used in this chapter are publicly available and links to these are available on

GitHub.

CHAPTER 2. SPRING 18

Dataset
Uncompressed

pigz DSRC 2
FaStore

FaStore SPRING
Improvement

size (fast) over FaStore
E. coli 827 253 189 - - 106 -

P. aeruginosa 768 279 198 142 145 115 1.26x
S. cerevisiae 5,986 2,062 1,507 - - 954 -

T. cacao 13,847 4,926 3,540 2,755 2,714 2,444 1.11x
Metagenomic 19,284 6,911 5,155 3,628 3,602 3,206 1.12x

PhiX 50,090 6,402 6,594 1,552 1,457 1,420 1.03x
H. sapiens 1 12,861 3,920 2,702 2,293 2,299 2,118 1.09x
H. sapiens 2 227,246 74,250 52,049 36,042 35,662 28,901 1.23x
H. sapiens 3 195,748 36,131 26,520 11,380 11,101 6,971 1.59x
H. sapiens 4 787,616 144,927 106,665 35,129 33,734 25,883 1.30x

Table 2.2: Sizes in MB for lossless compression. FaStore wasn’t run on S. cerevisiae
since it does not support variable length reads. On E. coli, FaStore exited with a
segmentation fault. Best results are boldfaced.

Dataset
Uncompressed FaStore

FaStore SPRING
Improvement

size (fast) over FaStore
E. coli 827 - - 63 -

P. aeruginosa 768 83 88 62 1.41x
S. cerevisiae 5,986 - - 366 -

T. cacao 13,847 1,339 1,300 1,215 1.07x
Metagenomic 19,284 1,937 1,935 1,736 1.11x

PhiX 50,090 1,226 1,099 1,160 0.95x
H. sapiens 1 12,861 1,244 1,251 1,223 1.02x
H. sapiens 2 227,246 17,846 17,417 13,460 1.29x
H. sapiens 3 195,748 10,246 9,927 5,657 1.75x
H. sapiens 4 787,616 30,379 28,846 20,316 1.42x

Table 2.3: Sizes in MB for recommended lossy compression. FaStore wasn’t run on S.
cerevisiae since it does not support variable length reads. On E. coli, FaStore exited
with a segmentation fault. Best results are boldfaced.

CHAPTER 2. SPRING 19

Tables 2.2 and 2.3 show the compression results for the lossless and recommended

lossy modes, respectively. We see that SPRING consistently achieves the best com-

pression ratios for both modes across the selected datasets, except for lossy com-

pression of the extremely high coverage (3.7 × 106x) PhiX dataset. For the 28x

human dataset (H. sapiens 2) from the Platinum Genomes Project (ERP001775)

[16], SPRING achieves 1.2-1.3x better compression than FaStore. The space required

for the recommended lossy mode is less than half of the lossless mode, primarily due

to Illumina binning of quality values (see Section 2.4.1).

The improvement is even more significant for the NovaSeq datasets, with close

to 1.75x improvement for the recommended lossy mode on the 25x-coverage dataset

(H. sapiens 3). For the 100x NovaSeq dataset (H. sapiens 4), SPRING can save

around 8 GB (≈ 25%) storage space as compared to FaStore in both modes. The

improvement provided by SPRING is not as significant for extremely high (PhiX)

or low (H. sapiens 1) coverages, but these cases are less common in practice. The

difference between HiSeq 2000 and NovaSeq datasets, and the contribution of reads,

quality values and read identifiers to the compressed sizes are discussed further in

Section 2.4.1. Finally, we observe that FaStore and SPRING achieve close to 5x

better compression than pigz and 2-3x better compression than DSRC 2.

Dataset
Lossless Recommended lossy

pigz DSRC 2
FaStore

FaStore SPRING
FaStore

FaStore SPRING
(fast) (fast)

E. coli 10s 2s - - 41s - - 41s
P. aeruginosa 31s 4s 35s 2m2s 23s 28s 1m50s 27s
S. cerevisiae 1m17s 25s - - 3m3s - - 2m55s

T. cacao 3m 1m10s 5m12s 18m 9m 3m30s 15m 9m
Metagenomic 4m38s 1m27s 7m 17m 10m 5m 14m 10m

PhiX 6m 2m8s 13m 30m 14m 11m 25m 17m
H. sapiens 1 2m37s 36s 4m37s 25m 11m 3m54s 24m 11m
H. sapiens 2 49m 13m 1h19m 3h35m 2h30m 1h 3h9m 2h32m
H. sapiens 3 33m 9m 58m 2h36m 2h 53m 2h28m 2h13m
H. sapiens 4 2h17m 43m 4h10m 9h51m 6h39m 3h50m 8h52m 7h33m

Table 2.4: Compression times. All tools were run with 8 threads.

Tables 2.4 and 2.5 contain the compression times and RAM usage, respectively,

CHAPTER 2. SPRING 20

Dataset
Lossless Recommended lossy

pigz DSRC 2
FaStore

FaStore SPRING
FaStore

FaStore SPRING
(fast) (fast)

E. coli 0.008 0.13 - - 1.4 - - 1.1
P. aeruginosa 0.008 0.13 2.3 2.3 1.5 2.1 2.1 0.84
S. cerevisiae 0.008 0.13 - - 2.3 - - 2.3

T. cacao 0.008 0.13 4.2 4.1 3.3 3.4 3.6 3.7
Metagenomic 0.008 0.13 11 11 3.6 9.3 9.2 5.0

PhiX 0.008 0.12 25 26 18 20 24 21
H. sapiens 1 0.008 0.18 17 18 4.9 13 14 5.3
H. sapiens 2 0.008 0.42 35 31 45 25 26 45
H. sapiens 3 0.008 0.13 40 41 32 38 32 31
H. sapiens 4 0.008 0.15 158 137 119 145 122 119

Table 2.5: Compression memory (RAM) in GB. All tools were run with 8 threads.

for both modes. We observe that pigz and DSRC 2 require significantly lesser com-

putational resources at the cost of worse compression ratios. FaStore (fast) is more

than twice as fast as FaStore, while providing similar compression ratios. SPRING is

competitive in terms of compression time and memory, requiring less time and mem-

ory than FaStore in most cases. SPRING is slower in the recommended lossy mode

because of the additional step of reordering qualities and identifiers according to the

new order of the reads.

The high memory consumption of SPRING is primarily due to the read reordering

step, where SPRING loads all the reads and two hash tables into memory. The pre-

vious work on HARC [11] discusses a strategy for reducing the memory consumption

by splitting the FASTQ file into multiple parts and applying the compressor indepen-

dently on each part. Since the memory consumption for SPRING/HARC is linear in

the number of reads, this strategy can reduce the memory consumption significantly

at the cost of worse read compression.

To achieve better read compression, SPRING also devotes more time to read

compression stages (reorder reads and encode reads). Together, these two stages take

about 4 hours (out of total 6h39m) for the lossless compression of 100x H. sapiens

4 dataset. We note here that SPRING introduces early stopping to the reordering

stage, which reduces the overall compression time by up to 20% (see Section 2.4.10).

CHAPTER 2. SPRING 21

Further improvements in compression time can be achieved by using more threads

(see Section 2.4.7).

Dataset
Lossless Recommended lossy

pigz DSRC 2
FaStore

FaStore SPRING
FaStore

FaStore SPRING
(fast) (fast)

E. coli 3s 2s - - 17s - - 15s
P. aeruginosa 4s 2s 12s 18s 9s 7s 12s 7s
S. cerevisiae 27s 10s - - 1m - - 43s

T. cacao 1m13s 23s 2m5s 2m14s 2m20s 1m9s 1m11s 1m46s
Metagenomic 1m46s 37s 2m42s 3m 3m18s 1m21s 1m36s 2m29s

PhiX 2m23s 39s 3m3s 3m47s 5m32s 2m33s 2m11s 5m34s
H. sapiens 1 1m 18s 1m27s 1m39s 2m25s 58s 59s 2m
H. sapiens 2 20m 14m 24m 25m 38m 15m 16m 28m
H. sapiens 3 11m 9m 11m 12m 26m 9m 10m 22m
H. sapiens 4 1h21m 41m 40m 45m 1h47m 32m 36m 1h37m

Table 2.6: Decompression times. All tools were run with 8 threads.

Dataset
Lossless Recommended lossy

pigz DSRC 2
FaStore

FaStore SPRING
FaStore

FaStore SPRING
(fast) (fast)

E. coli 0.003 0.23 - - 1.7 - - 1.7
P. aeruginosa 0.003 0.24 0.78 0.8 1.7 0.53 0.61 1.7
S. cerevisiae 0.003 0.43 - - 2.2 - - 1.9

T. cacao 0.003 0.29 1.7 2.3 2.1 1.2 1.5 1.7
Metagenomic 0.003 0.29 1.9 1.9 2.6 1.3 1.4 3.1

PhiX 0.003 0.33 19 16 2.3 15 13 2.3
H. sapiens 1 0.003 0.30 2 1.7 3.2 1.4 1.3 3.7
H. sapiens 2 0.003 0.42 26 19 5.5 21 15 5.5
H. sapiens 3 0.003 0.34 39 23 6.1 30 17 6.3
H. sapiens 4 0.003 0.36 141 85 6.6 110 81 6.7

Table 2.7: Decompression memory (RAM) in GB. All tools were run with 8 threads.

Tables 2.6 and 2.7 contain the decompression times and RAM usage, respectively,

for both modes. SPRING achieves reasonably fast decompression, while using much

less memory as compared to FaStore. By using more threads, SPRING can achieve

faster decompression at the cost of higher memory usage (see Section 2.4.7). SPRING

also supports the ability to decompress a subset of reads without needing to decom-

press the whole file (see Section 2.4.4).

CHAPTER 2. SPRING 22

2.4 Additional results

Unless otherwise specified, all tools were run with 8 threads.

2.4.1 Field-wise compression results

Tables 2.8 and 2.9 provide the field-wise compression results for lossless and recom-

mended lossy mode, respectively. Since pigz does not provide field-wise compression

results, it is not included in these tables. We also exclude FaStore (fast) since it is

very similar to FaStore in terms of compression results (the two modes differ only in

read compression). Note that the sizes for SPRING are before the Tar step which

adds a small overhead. Recall that H. sapiens 2 is 28x dataset sequenced on HiSeq

2000, while H. sapiens 3 and H. sapiens 4 are sequenced on NovaSeq, with coverages

25x and 100x, respectively.

Dataset Tool Reads Quality Identifier

H. Sapiens 2
DSRC 2 22,188 27,810 2,051
FaStore 6,968 24,868 3,826
SPRING 4,253 23,774 858

H. Sapiens 3
DSRC 2 19,845 4,576 2,098
FaStore 6,152 3,789 1,160
SPRING 3,040 3,630 292

H. Sapiens 4
DSRC 2 79,850 18,346 8,468
FaStore 13,741 15,178 4,815
SPRING 10,125 14,553 1,165

Table 2.8: Sizes (in MB) of individual fields for lossless compression.

From Table 2.8, we see that FaStore and SPRING provide significant improvement

in read compression over DSRC 2, while the improvement in quality compression is

smaller. Since FaStore reorders the reads even in its lossless mode, the read order

information is effectively preserved in the identifiers. Due to this, the identifiers take

much larger size for FaStore as compared to SPRING. Note that SPRING takes less

space for read compression than FaStore even though it stores information about the

read order in the read field. SPRING achieves slightly better quality compression than

CHAPTER 2. SPRING 23

Dataset Tool Reads Quality Identifier

H. Sapiens 2
FaStore 6,917 10,500 0
SPRING 2,553 10,892 0

H. Sapiens 3
FaStore 6,138 3,789 0
SPRING 2,022 3,625 0

H. Sapiens 4
FaStore 13,668 15,178 0
SPRING 5,722 14,558 0

Table 2.9: Sizes (in MB) of individual fields for recommended lossy compression.

FaStore due to the use of BSC instead of QVZ. Comparing the HiSeq 2000 dataset

(H. sapiens 2) to the other two NovaSeq datasets, we observe that the quality takes

up a much smaller fraction of the total size for NovaSeq datasets which have only 4

quality levels. For the NovaSeq data, the size required for reads is quite comparable

to that required for qualities. Due to this, SPRING provides greater improvement

for these datasets.

In Table 2.9, both FaStore and SPRING reorder the reads and only retain the

pairing information. We see that SPRING requires 2.5-3x less space for compressing

the reads in this mode. Comparing with the lossless mode (Table 2.8), we see that

Illumina binning reduces the space needed to store the quality values by more than

2x for H. sapiens 2. For SPRING, storing only the pairing information rather than

the complete order of reads boosts the read compression by a factor of 1.5-1.7, with

more improvement for higher coverage datasets.

2.4.2 Comparison with alignment + SAM compression

In applications such as sequencing of a new organism or metagenomics, a reference

is typically not available and hence reference-free compression of FASTQ files is im-

portant. Even if a reference is available, the FASTQ file is typically retained (at

least temporarily) and again FASTQ compression becomes necessary. Since the ref-

erence and the FASTQ file are usually obtained from different individuals, using a

reference-free compressor like SPRING can be beneficial since it is more robust to

variations between individuals. To understand this better, we compared SPRING to

CHAPTER 2. SPRING 24

reference-based alignment. We first used BWA-MEM [17] to align the H. sapiens 3

dataset to the hg19 reference. Then we removed some irrelevant fields from the SAM

file (MAPQ, RNEXT, PNEXT, TLEN and optional fields), since these are not used

to compress data in the FASTQ file. Finally, we used CRAM v3 (from SAMtools)

to compress the SAM file, both before and after sorting according to the genome

position. The commands used for these operations are available on GitHub. The

parameters were chosen to achieve best compression.

The compressed sizes for the unsorted and sorted SAM files are 7,644 MB and

7,793 MB, respectively. The compressed size for the sorted SAM file with the reference

embedded in the CRAM file is 8,488 MB. In comparison, SPRING achieves 6,971 MB

without using any external reference. While the CRAM compression step is quite

fast (around 25m), the alignment took around 8 hours. SPRING needs 2 hours for

compressing this dataset. Thus, we see that directly compressing FASTQ files can

be advantageous even when a reference is available. For species with larger variation

between individuals, SPRING can provide even greater improvements over alignment

+ SAM compression.

2.4.3 Long read compression

Accession no. Species
Genome Maximum

#reads (M) Coverage Technology
length (Mb) read length

SRR1284073 E. coli 4.6 49424 0.65 140 PacBio
ERR637420 E. coli 4.6 47422 0.08 86 Oxford Nanopore MinION

Table 2.10: Long read datasets used for evaluation. Both datasets are single end.

Accession no. Uncompressed pigz SPRING
SRR1284073 1,304 546 420
ERR637420 264 120 94

Table 2.11: Sizes in MB for long read compression.

We compared the long read compression (lossless) mode with pigz, since DSRC

CHAPTER 2. SPRING 25

2 and FaStore do not support long reads. We evaluated the tools on two datasets

(Table 2.10) from the most popular long read platforms. The compression results

are shown in Table 2.11. We observe that SPRING achieves better compression than

pigz on these datasets, but the improvement is not as pronounced as that for short

read datasets. This is because SPRING uses the general-purpose compressor BSC for

long read compression rather than the specialized compression method employed for

short reads, and hence it is unable to exploit much of the redundancy in the reads.

Building a specialized read compressor for long reads is part of future work.

2.4.4 Decompressing subset of reads

SPRING allows decompression of a subset of reads by specifying a range of reads to

decompress. For paired end files, the parameters refer to read pairs rather than reads.

Table 2.12 shows the times needed to decompress 1M, 10M and 100M read pairs from

losslessly compressed H. sapiens 3, along with the time needed to decompress all read

pairs (≈ 270M). The results were obtained by using the --decompress-range flag.

We see that SPRING allows fast decompression of small subsets of reads, with a slight

constant overhead due to decompression of the seq stream.

Start pair End pair Number of pairs Decompression time
100M 101M 1M 1m13s
100M 110M 10M 1m48s
100M 200M 100M 9m4s

- - 270M 22m

Table 2.12: Time required to decompress subset of read pairs for H. sapiens 3. Last
row represents decompression of entire file.

2.4.5 Results for variable length short reads

Table 2.13 contains compression results for NovaSeq variable length reads. FaStore

does not support variable length reads, so only SPRING, pigz and DSRC 2 were

CHAPTER 2. SPRING 26

tested. On these datasets, SPRING provides 3-5x better compression than pigz and

DSRC2.

Sample
NA12878 NA12878

Rep 1, Lane 1 Rep 1 & 2
(original) (original)

Organism H. sapiens H. sapiens
Technology NovaSeq NovaSeq
Coverage 26x 105x

Maximum Read length 151 151
Uncompressed Size 205,386 826,117

Lossless
pigz 38,007 152,243

DSRC 2 28,448 114,393
SPRING 7,565 29,020

Recommended lossy
SPRING 6,193 22,954

Table 2.13: Compression sizes in MB for the variable-length NovaSeq datasets. Only
tools supporting variable length reads were tested.

2.4.6 Quality value lossy compression modes

Mode Parameters Compressed quality size
Lossless - 23,774

Illumina binning - 10,892
QVZ Rate = 1 bit/quality value 7,237

Binary thresholding thr=20, high=40, low=6 1,034

Table 2.14: Sizes in MB for different quality value compression modes for H. sapiens
2.

While the recommended lossy mode for SPRING uses Illumina 8-level binning

for quality values, SPRING supports two other schemes for lossy compression of

quality values. Table 2.14 shows the compressed sizes for these schemes for H. sapiens

2 (HiSeq 2000, 28x). In previous works [8, 9], all these were shown to have no

CHAPTER 2. SPRING 27

detrimental effect on variant calling (binary thresholding can hurt variant calling for

low coverage datasets). We see that binary thresholding can reduce the space needed

by qualities significantly. Since QVZ uses an optimized context-dependent quantizer

dependent on the input data, it is slightly slower, but provides more flexibility in

terms of the desired rate and should provide lower distortion at the same rate than

other schemes.

2.4.7 Impact of number of threads

Number Compressed Compression Compression Decompression Decompression
of threads size (MB) time memory (GB) time memory (GB)

4 6,977 3h26m 31 42m 4.6
8 6,971 2h 32 26m 6.1
16 6,960 1h20m 32 18m 9.3
32 6,968 1h6m 32 13m 15

Table 2.15: Impact of number of threads on compressed size and time/memory con-
sumption for lossless compression of H. sapiens 3.

Table 2.15 shows the compressed sizes and computational requirements for lossless

compression H. sapiens 3 dataset for three values of number of threads. The results

were obtained by using the -t flag. We observe that the compression and decom-

pression times improve as the number of threads increase. For very high number of

threads, the disk I/O becomes the bottleneck leading to diminishing returns. The

impact of increasing the number of threads on the compressed size and compression

memory usage is negligible. The decompression memory increases with the number

of threads because more blocks are now decompressed in parallel.

2.4.8 Impact of block size

SPRING compresses the streams in blocks to allow random access and efficient decom-

pression. The number of reads (read pairs for PE datasets) per block is set to 256,000

by default (for short reads). Table 2.16 shows the compressed sizes and computational

requirements for lossless compression H. sapiens 3 dataset for three values of block

CHAPTER 2. SPRING 28

Block Compressed Compression Compression Decompression Decompression
size size (MB) time memory (GB) time memory (GB)

128,000 7,011 1h59m 31 26m 5.5
256,000 6,971 2h 32 26m 6.1
512,000 6,950 1h56m 32 24m 8.9

Table 2.16: Impact of block size on compressed size and time/memory consumption
for lossless compression of H. sapiens 3.

size. The results were obtained by modifying the parameter NUM READS PER BLOCK in

src/params.h. We observe that using higher block sizes yields slightly better com-

pression but needs more memory during decompression. The impact on compression

and decompression times is negligible for this range of block sizes.

2.4.9 Impact of read reordering on ID compression

While read identifiers are not used in most downstream applications, some appli-

cations like Picard MarkDuplicates (http://broadinstitute.github.io/picard/)

might use it. In such cases, we recommend that SPRING be used without the -r

flag which allows read reordering (with pairing information preserved). When the

-r flag is specified, the read identifiers are reordered and then compressed. Due to

this, the consecutive read identifiers now contain large differences, leading to poor

compression. Even though the size needed for the reads reduces, the increase in the

read identifier size slightly outweighs this reduction. Table 2.17 shows this for H.

sapiens 3 dataset.

Flag Read Read identifier Read + Read identifier
-r used 2,020 1,371 3,391

-r not used 3,040 292 3,332

Table 2.17: Impact of using -r flag on read and read identifier compression for H.
sapiens 3. Sizes are in MB.

http://broadinstitute.github.io/picard/

CHAPTER 2. SPRING 29

2.4.10 Improvements in reordering stage

Here we discuss the impact of two improvements made in SPRING to the reordering

stage of HARC.

Searching for matches in both directions

Mode
Compressed size Compression Compression
of reads (MB) time memory (GB)

Search in one direction 3,251 1h59m 32
Search in both directions 3,040 2h 32

Table 2.18: Impact of bidirectional search on compressed size and time/memory
consumption for lossless compression of H. sapiens 3.

While HARC searched for matching reads in only one direction (matching the

suffix of the current read), SPRING looks for matches in both directions. Table

2.18 shows the impact of this on read compression for lossless compression of H.

sapiens 3 dataset (note that the reported times include time for quality and identifier

compression). The results for the first row were obtained by replacing src/reorder.h

in the SPRING repository by src/old src/reorder 1d/reorder.h. We observe that

bidirectional search improves the read compression by around 6% without significantly

affecting the compression time/memory.

Early stopping

Mode
Compressed size Compression Compression
of reads (MB) time memory (GB)

No early stopping 10,107 9h15m 119
Early stopping 10,125 6h39m 119

Table 2.19: Impact of early stopping on compressed size and time/memory consump-
tion for lossless compression of H. sapiens 4.

CHAPTER 2. SPRING 30

SPRING maintains the fraction of unmatched reads in the last 1 million reads

and stops looking for matches once this fraction crosses a certain threshold (50% by

default). The maximum impact of this step is on the largest dataset H. sapiens 4.

Table 2.19 shows results for lossless compression of H. sapiens 4 where the reported

times includes the time for quality and identifier compression. The results for the

first row were obtained by setting STOP CRITERIA REORDER to 1.0 in src/params.h.

We see that early stopping reduces the compression time by more than 20% for this

dataset while having negligible impact on compressed size and memory usage.

2.5 Conclusions

This chapter presented the FASTQ compressor SPRING, which outperforms existing

tools, offering 1.3x-1.8x improvement in compression over the next best perform-

ing tool on data sequenced on Illumina’s latest sequencer, NovaSeq. SPRING sup-

ports a wide variety of modes and features and is competitive in terms of computa-

tional requirements. We note that there have been some compressors developed after

SPRING, notably PgRC [18] and FQSqueezer [19], sometimes obtaining better com-

pression results than SPRING at the cost of added computation. These compressors

support many of the same compression modes as SPRING, and PgRC uses a similar

approximate assembly-based approach.

The streams generated by SPRING can be easily transformed to streams com-

patible with the upcoming standard developed by the MPEG-G group for genomic

information representation [20] and work on integration of SPRING into the stan-

dard is currently being pursued as part of the genie project (https://github.com/

mitogen/genie/). We are also developing specialized read compressors for long read

technologies that can effectively handle insertion and deletion errors.

https://github.com/mitogen/genie/
https://github.com/mitogen/genie/

Chapter 3

LFZip: Lossy compression of

multivariate floating-point time

series data via improved prediction

3.1 Introduction

With the rapid increase in smart machines, IoT devices and sensors collecting and

transmitting large volumes of measurement data, it has become essential to consider

data compression strategies to reduce the transmission volume. This chapter focuses

on the problem of multivariate time series compression, which arises in several ap-

plications such as manufacturing processes, medical measurements, activity trackers,

autonomous vehicles, power consumption, etc. In a number of cases, the time series

consists of high-frequency floating-point data. This data typically contains measure-

ment noise due to which lossy compression can provide significantly better compres-

sion without adversely impacting the downstream applications. In some cases, lossy

compression can lead to improvement in the performance of downstream applications

due to implicit denoising of the data [21]. In several of these scenarios, the compres-

sion is performed on an edge device that collects the data and transmits it to the

cloud. These edge devices are usually computation and communication bandwidth

constrained and hence the compression solutions must be real time and suitable for

31

CHAPTER 3. LFZIP 32

these devices.

A lossy compressor consists of an encoder and a decoder, where the encoder com-

presses the original time series x1, x2, . . . , xn to obtain the compressed bit stream.

This compressed bit stream can then be decompressed by the decoder to obtain the

reconstructed time series x̂1, x̂2, . . . , x̂n which differs from the original time series to an

extent acceptable for a specific application. The error in the reconstructed time series

with respect to the original time series is measured in terms of a distortion function,

such as the mean squared error, mean absolute error or maximum absolute error. The

optimal distortion function is highly dependent on the downstream applications that

work with the reconstructed time series, but in absence of specific domain knowledge,

maximum absolute error, defined as maxi=1,...,n |xi− x̂i|, is a generally acceptable dis-

tortion measure. Note that a maximum absolute error of ε implies that the original

and the reconstructed time series differ by at most ε at any time step.

3.1.1 Our Contributions

We propose LFZip (Lossy Floating-point Zip), a lossy compressor for time series data

based on the prediction-quantization-entropy coder framework [22] which achieves

significant improvement in compression over the previous state-of-the-art compres-

sors. LFZip works under the maximum absolute error distortion metric where the

maximum allowable absolute error is a user-specified parameter. LFZip also supports

compression of multivariate time series where the dependencies across the variables

are exploited to further boost the compression.

LFZip is available as an open-source tool on GitHub, providing a easily extensible

framework supporting several prediction models including linear predictors and neural

networks. The GitHub URL is https://github.com/shubhamchandak94/LFZip.

3.1.2 Previous Work

There have been several works on lossless and lossy compression of floating-point

time series and multidimensional scientific data. For lossless compression of floating-

point data, specialized compressors such as FPZIP [23] outperform general-purpose

https://github.com/shubhamchandak94/LFZip

CHAPTER 3. LFZIP 33

compressors on multidimensional datasets. Several lossy compressors have also been

proposed, which allow much better compression at the expense of some acceptable

level of distortion. We next discuss a few of the existing works in literature.

Swinging door [24] and Critical Aperture [25] algorithms retain only a subset

of the points in the time series based on the maximum error constraint and use

linear interpolation during decompression. These are widely used in certain domains

[26, 27] due to their suitability for computationally constrained systems. Another

line of work uses polynomial or regression models to predict the next point in the

time series and then quantizes the prediction error. Compressors in this category

include SZ [28, 29, 30, 31], ISABELA [32] and NUMARCK [33], of which SZ is the

state-of-the-art compressor under maximum error distortion. Finally, some of the

compressors [34, 35] apply a transform to the original time series and then perform

quantization in the transformed domain. Note that some of these compressors are

not specific to time series and also support multidimensional scientific datasets. We

refer the reader to [28] for a more detailed survey on lossy compressors under different

distortion measures.

We should note that the general approach of prediction-quantization-entropy cod-

ing employed in LFZip has been extensively applied for lossy compression in the

context of speech [36], images [37] and videos [38], where domain-specific prediction

models and distortion measures are used, and has also been studied theoretically (see

[22]). While working within this traditional framework, LFZip attempts to utilize

advances in prediction models to achieve improved error-bounded lossy compression

of time series data. This follows a line of similar efforts to improve lossless data

compression using powerful prediction models such as neural networks [39, 40, 41].

We next discuss the methods employed in the proposed compression framework.

CHAPTER 3. LFZIP 34

3.2 Methods

3.2.1 Encoding and Decoding Framework

The encoding and decoding framework for LFZip is summarized in Figure 3.1. The

encoder processes the input one symbol at a time, and consists of 3 stages: predictor,

quantizer and entropy coder. For simplicity, we describe these in detail for the case of

univariate time series. In case of multivariate time series, only the prediction step is

modified while the quantizer and entropy coder act independently on each variable.

Predictor: At every time-step t, the predictor block tries to guess the value xt,

based on the past reconstructions. Formally, the predictor block fits a function

Pt(x̂1, x̂2, . . . , x̂t−1), to obtain the prediction yt. Note that the predictor is restricted

to be causal in nature and is applied on the reconstructed values (rather than the

input) so that the same procedure can be applied during the decompression. The

predictor function Pt itself can be adaptive but must satisfy the causality constraint

and should be trained only on the reconstructed values. More details about the pre-

dictors used in the framework and the training procedure are presented in Section

3.2.2.

For multivariate time series with k variables per time step, the prediction of time

step t for the jth variable can be based on not only the time steps 1, . . . , t− 1 for the

jth variable, but also on time steps 1, . . . , t− 1 for the other variables and time step t

for the first j − 1 variables (to ensure causality). This allows the predictor to exploit

dependencies across variables and provides improved compression in some cases.

Quantizer: The floating-point prediction error is quantized in this step so as to

satisfy the maximum absolute error constraint. Let ∆t = xt− yt be the difference be-

tween the true value and the predictor output at time step t. The quantizer performs

uniform scalar quantization of this ∆t using a step size of 2ε to obtain the quantized

output ∆̂t. The final reconstructed output x̂t is then given by x̂t = yt +∆̂t. Note that

the uniform quantization guarantees that |∆̂t − ∆t| ≤ ε, which in turn implies that

|x̂t − xt| ≤ ε. We use 16-bit quantized output allowing for 65535 quantization bins

(1 bin reserved for outliers as discussed below). We also tested 8-bit quantization,

CHAPTER 3. LFZIP 35

but the impact was negligible since the entropy coding stage is able to remove any

redundancy introduced by 16-bit quantization.

In practice, the presence of outliers or sudden change in statistics of the time series

can lead to a large ∆t value that lies outside the quantization range. In such cases, the

reserved quantization bin is used and the data point xt is stored as a floating-point

number, with the reconstruction x̂t = xt.

Entropy Coder: The final stage of the compression involves applying a universal

lossless compressor on the quantized time series of the differences: ∆̂1, ∆̂2, . . . , ∆̂n to

obtain the variable length bit-stream b. LFZip uses BSC [42], an efficient BWT-based

compressor, for this stage.

Predictor Quantizer Entropy
coder

… , #$%& , #$

'#&,'#(, … , '#$)&, '#$

*$ Δ$,Δ$

,Δ$

- Entropy
decoder

'#&,'#(, … , '#$)&, '#$

Predictor '#$- ,Δ$

Encoder Decoder

Figure 3.1: Encoder and decoder framework in LFZip.

The Decoder operations are symmetric but occur in the reverse order (see Figure

3.1). First the entropy-coded bit-stream b is decoded to obtain ∆̂1, ∆̂2, . . . , ∆̂n. The

reconstruction then occurs one time-step at a time, in a causal fashion. At each time-

step, the predictor Pt(x̂1, x̂2, . . . , x̂t−1) causally outputs the prediction yt, which can

then be used to output the reconstruction x̂t. Note that the same predictor function

Pt and adaptive training procedure must be used during the encoding and decoding.

3.2.2 Predictors

Several prediction models can be utilized in the framework described. We look here

at two classes of predictors of varying complexity supported by LFZip.

Normalized Least Mean Square Predictor (NLMS): The Normalized Least

Mean Square Predictor (NLMS) can be thought of as an adaptive linear prediction

filter of window size k (32 by default). The parameters of the linear filter are initialized

with a fixed value and are updated at each time-step based on the mean square

CHAPTER 3. LFZIP 36

prediction error. The update procedure is similar to stochastic gradient descent,

where the gradients are normalized before update. As the predictor contains very few

parameters, we observed that in practice it requires no pre-training and adapts very

quickly to changing input statistics. In practice, the NLMS predictor works well on

various types of inputs and is the default predictor in the current implementation.

Neural Network based Predictors: LFZip also supports more complex neural

network based predictors. The current implementation supports different variants of

the Fully Connected (FC) and the biGRU networks [43] for univariate time series.

The FC and biGRU networks take as input the window of past k reconstruction

symbols (k = 32 by default) and output a floating-point prediction for xt. As the

NLMS predictor can be thought of as a single layer linear neural network, the FC and

biGRU networks are strictly stronger models (in terms of expressibility). However,

the larger number of parameters in FC and biGRU networks make them adapt much

more slowly to the changing statistics in the time series. To resolve this issue, we

employ offline training for neural network based predictors before the encoding step.

During the offline training, the model is trained on some given training data with

early stopping performed with respect to validation data. The trained model is used

as the predictor during compression, and the parameters can be optionally updated

online during the compression. The utility of offline training highly depends upon on

the similarity of the training data with the test data being compressed.

Note that while the training is performed on the true unquantized values, during

the compression, the model performs prediction based on the quantized values. This

can lead to worse performance in the case where the maximum error threshold ε is

large. To resolve this issue, we approximately emulate the quantization process during

the training by adding some appropriate noise to the inputs (based on the maximum

error parameter ε). We observed that adding noise during the training leads to 5-10%

improvement in compression. We experimented with uniform and Gaussian noise

models and observed that uniformly distributed noise model typically works better

for the maximum error constraint.

CHAPTER 3. LFZIP 37

3.3 Results

Name Length Description
BSC lossless

compression ratio
acc 3.54M Heterogeneity Activity Recognition - smartwatch accelerometer [44] 2.84
gyr 3.21M Heterogeneity Activity Recognition - smartwatch gyroscope [44] 2.79
pow 2.05M Household electric power consumption - active power [45] 5.21
ppg 0.50M Blood volume pulse/photoplethysmography (PPG) [46] 2.48
gas 0.93M Home activity monitoring - MOX gas sensors resistance [47] 4.97
dna 1.17M Nanopore DNA sequencing raw current data 4.55
vib 1.55M Siemens healthy tool vibration data 1.79
sen 0.75M Siemens sensor data 4.27

Table 3.1: Datasets used for evaluation.

3.3.1 Experimental setup

We evaluated the proposed compressor LFZip on several time series datasets, span-

ning a variety of domains including smartwatch sensor data, household power con-

sumption data, gas sensor array data, medical and genomic data, etc. as shown in

Table 3.1. We also report results on two datasets obtained from Siemens. The first

five datasets were chosen as a representative sample of the floating-point time series

datasets from the UCI Machine Learning Repository [48]. Figure 3.2 contains snap-

shots of all the datasets. The datasets can be accessed online on the LFZip GitHub

repository (except for the Siemens datasets).

We compare LFZip with two additional compressors SZ [28, 29, 30, 31] and critical

aperture (CA) [25]. SZ is the current state-of-the-art compressor for maximum error

distortion [28], while CA is widely used in the industry due to its low computational

requirements [26, 27]. For SZ, we used the implementation available at https://

github.com/disheng222/SZ (version: 2.1.7), while we implemented CA based on

the description available at [25, 26, 49]. While certain implementations of CA do not

use an entropy coding step, we apply BSC to the retained points for fair comparison

with LFZip and SZ. Some of the datasets contained multivariate time series out of

which a single variable was considered for fair comparison with CA and SZ as they

https://github.com/disheng222/SZ
https://github.com/disheng222/SZ

CHAPTER 3. LFZIP 38

don’t natively support multivariate time series compression.1 Results for multivariate

time series compression using LFZip are discussed in Section 3.3.3.

3.3.2 Results for LFZip (NLMS) for univariate time series

data

Dataset Compressor
Maximum error ε

10−3 10−2 10−1

acc
CA 2.84 3.01 5.19
SZ 3.25 5.05 11.00

LFZip (NLMS) 3.55 5.86 12.71

gyr
CA 2.88 4.27 10.75
SZ 4.26 8.08 24.79

LFZip (NLMS) 6.05 12.26 28.77

pow
CA 5.05 6.23 12.47
SZ 5.09 9.65 23.99

LFZip (NLMS) 4.17 7.37 17.98

ppg
CA 2.48 2.49 2.74
SZ 2.43 2.80 4.39

LFZip (NLMS) 3.18 5.28 9.13

Dataset Compressor
Maximum error ε

10−3 10−2 10−1

gas
CA 16.97 64.36 245.51
SZ 22.69 75.84 299.65

LFZip (NLMS) 31.56 101.48 252.55

dna
CA 4.54 4.54 4.86
SZ 4.03 4.55 8.62

LFZip (NLMS) 3.04 4.48 8.40

vib
CA 2.07 4.85 18.51
SZ 4.77 11.77 40.61

LFZip (NLMS) 10.64 22.36 53.15

sen
CA 4.34 7.60 125.04
SZ 6.55 20.58 179.87

LFZip (NLMS) 6.88 21.70 180.98

Table 3.2: Compression ratios for CA, SZ and LFZip (NLMS). Best results are bold-
faced.

Table 3.2 shows the results for CA, SZ and LFZip (using NLMS predictor with

default window size k = 32) for the eight univariate time series datasets and three

values of the maximum error (10−1, 10−2, 10−3). For comparison, Table 3.1 shows the

results for lossless compression with BSC, where BSC was chosen since it outper-

formed other lossless tools like Gzip, 7-zip, bzip2 and fpzip [23]. We see that lossy

compression can lead to significant benefits over lossless compression, especially at

higher maximum error constraints. From Table 3.2, we see that LFZip achieves the

best compression in most cases, except for the pow and dna datasets. In general we

found that the LFZip (NLMS) offers the most benefits for datasets that are difficult

to approximate with piecewise linear functions or lower order polynomials (see Figure

3.2 for snapshots of the datasets). The worse performance of LFZip (NLMS) on pow

1Note that although SZ supports multidimensional data compression, we found that this mode in
fact leads to worse compression when run on multivariate time series, probably because SZ expects
continuity along each dimension, which might not be true for the variables at a single time step.

CHAPTER 3. LFZIP 39

(a) acc (b) gyr

(c) pow (d) ppg

(e) gas (f) dna

(g) vib (h) sen

Figure 3: Appendix: Snapshots of the datasets used for evaluation.Figure 3.2: Snapshots of the datasets used for evaluation.

CHAPTER 3. LFZIP 40

and dna datasets can be explained by the sudden jumps in the time series which

are difficult to predict using a linear model. We will see in Section 3.3.5 that we

can overcome this limitation of NLMS predictors by using more powerful NN based

predictors.

3.3.3 Results for LFZip (NLMS) for multivariate time series

data

Dataset Mode
Maximum error ε

10−3 10−2 10−1

acc univariate 3.588 5.931 13.220
(X, Y, Z) multivariate 3.592 5.934 13.250

gyr univariate 6.295 13.605 34.181
(X, Y, Z) multivariate 6.409 13.763 34.597

Dataset Mode
Maximum error ε

10−3 10−2 10−1

gas univariate 26.239 63.304 152.378
(8 sensors) multivariate 27.614 75.179 204.006

sen univariate 6.627 19.669 166.568
(3 sensors) multivariate 6.669 20.334 304.878

Table 3.3: LFZip (NLMS) compression ratios for multivariate time series (i) when
each variable is compressed independently and (ii) when compressed together.

LFZip can provide further improvement in compression for multivariate time series

with dependencies across the variables. Table 3.3 shows the results for acc (3 variables:

X, Y and Z), gyr (3 variables: X, Y and Z), gas (8 variables: different MOX gas

sensors) and sen (3 variables: different sensors) where the different variables are

(i) compressed independently with LFZip in the univariate mode and (ii) compressed

together with LFZip in the multivariate mode. We see significant gains of compressing

the series together for the gas and sen datasets, but very minor improvement for acc

and gyr datasets. The advantages for compressing multivariate time series together is

likely to be most pronounced when the values for other variables can aid the predictor

beyond the past values for the same variable.

3.3.4 LFZip (NLMS) ablation experiments

In this section, we study the impact of the prediction and entropy coding stages for

LFZip (NLMS). Figure 3.3 shows the impact of the NLMS window size (k) on the

CHAPTER 3. LFZIP 41

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

1 2 4 8 16 32 64

Co
m

pr
es

sio
n

ra
tio

NLMS window size

0.1 maximum error

0.01 maximum error
0.001 maximum error

Figure 3.3: Compression ratio for ppg dataset as the NLMS window size is varied.

compression ratio for the ppg dataset. We observe that the performance initially im-

proves with increasing k as the model becomes more expressive but at higher window

sizes the performance becomes worse. This is likely because the higher number of

parameters makes it slower at adapting to the changing statistics in the time series.

To understand the impact of the entropy coding stage on the performance of

LFZip, we replaced the entropy coder BSC by 7-zip and Gzip for the ppg dataset

with maximum error 10−2. The compression ratios obtained were 5.28, 4.43 and 3.48

for BSC, 7-zip and Gzip, respectively. This shows that the entropy coder plays an im-

portant role in the framework and allows us to use a simple uniform scalar quantizer.

We note that even with 7-zip as the entropy coder, LFZip achieves better compression

than SZ for most datasets, showing the advantages of improved prediction.

Finally, we note that the change in compression ratio as the NLMS window size

changes depends on the specific dataset. For certain datasets, such as the dna dataset,

we found that a window size of 0 performed the best. Note that a window size of

0 corresponds to removing the predictor and directly quantizing the time series and

compressing the quantized values with BSC. We believe that there is an interesting

interaction between the predictor attempting to minimize the loss for the error se-

quence, and the BSC entropy coder directly being able to capture the redundancy in

the quantized time series. Further exploration of this phenomenon is part of future

CHAPTER 3. LFZIP 42

work.

3.3.5 Results for LFZip (NN) for univariate time series data

Dataset Compressor
Maximum error ε
10−2 10−1

acc
SZ 4.64 9.38

LFZip (NLMS) 5.10 10.19
LFZip (NN) 5.26 10.78

gyr
SZ 6.99 20.96

LFZip (NLMS) 10.22 23.33
LFZip (NN) 10.35 25.00

Dataset Compressor
Maximum error ε
10−2 10−1

pow
SZ 9.44 23.57

LFZip (NLMS) 7.21 17.74
LFZip (NN) 9.29 25.38

dna
SZ 4.45 8.67

LFZip (NLMS) 4.46 8.40
LFZip (NN) 4.60 8.99

Table 3.4: Compression ratios for test datasets for SZ, LFZip (NLMS) and LFZip
(NN). Best results are boldfaced.

Table 3.4 shows the results for LFZip with a neural network (NN) based predictor.

For these experiments, we used a simple fully connected network with 4 hidden layers

with 128 neurons each and first layer with 32 neurons, ReLU activation and batch

normalization. Only the datasets for which the statistics were stationary over time

were used for these experiments so as to allow offline training before compression.

The datasets were divided into training, validation and test datasets of equal sizes,

and the compression was performed only on the test dataset for all the compressors.

For LFZip (NN), offline training was performed using the training and validation

datasets for 5 epochs. During training, uniformly distributed noise in [−0.05, 0.05]

was added to emulate the quantization noise. No adaptive training was employed

during compression as that didn’t seem to provide measurable benefits.

From Table 3.4, we see that LFZip (NN) improves the result over LFZip (NLMS)

and SZ in all cases, except for pow dataset with maximum error 10−2 where it is

slightly worse than SZ. This shows that better prediction using stronger NN based

models can lead to further improvement in compression for LFZip at the cost of in-

creased computational complexity. We also observed that in certain cases, removing

the predictor altogether outperforms both NN and NLMS, suggesting that our un-

derstanding of the underlying dynamics between the predictor and the entropy coder

remains incomplete.

CHAPTER 3. LFZIP 43

3.3.6 Computational requirements

The experiments were run on an Ubuntu 18.04 server with 2.2 GHz Intel Xeon proces-

sors and NVIDIA TITAN X Pascal GPUs. Note that the GPUs were used only during

the training phase of the NNs, and the compression with both NLMS and NN predic-

tors was performed on CPU with a single thread to ensure reproducibility and correct

decompression. The current implementation of LFZip (NLMS) is written in Python

and C++, and achieved a compression/decompression speed of ∼2M timesteps/s for

univariate time series. This is about an order of magnitude slower than SZ but should

be practical for most applications. LFZip (NN) is more computationally expensive

with a speed of ∼1K timesteps/s for the model used above.

3.4 Conclusion

In this chapter, we proposed an error-bounded lossy compressor for multivariate

floating-point time series based on the prediction-quantization-entropy coder frame-

work. Using linear and neural network prediction models, the proposed compressor

LFZip achieves higher compression ratios than the previous state-of-the-art compres-

sors. Future work includes an optimized implementation for the neural network-based

framework, extension of the framework to multidimensional datasets, and exploration

of other predictive models to further boost compression. Another direction to explore

is the interplay between the predictor and the entropy coder, and possible joint opti-

mization of the two in order to maximize the compression ratios.

Chapter 4

Impact of lossy compression of

nanopore raw signal data on

basecalling and consensus accuracy

4.1 Introduction

Nanopore sequencing technologies developed over the past decade provide a real-time

and portable sequencing platform capable of producing long reads, with important

applications in completing genome assemblies and discovering structural variants as-

sociated with several diseases [50]. Nanopore sequencing consists of a membrane with

pores where DNA passes through the pore leading to variations in current passing

through the pore. This electrical current signal is sampled to generate the raw signal

data for the nanopore sequencer and is then basecalled to produce the read sequence.

Due to the continuous nature of the raw signal and high sampling rate, the raw signal

data requires large amounts of space for storage, e.g., a typical 30x depth human

sequencing experiment can produce terabytes of raw signal data, which is an order of

magnitude more than the space required for storing the basecalled reads [51].

Due to the ongoing research into improving basecalling technologies and the scope

for further improvement in accuracy, the raw data needs to be retained to allow re-

peated analysis of the sequencing data. This makes compression of the raw signal

44

CHAPTER 4. NANOPORE LOSSY COMPRESSION 45

data crucial for efficient storage and transport. There have been a couple of lossless

compressors designed for nanopore raw signal data, namely, Picopore [52] and VBZ

(https://github.com/nanoporetech/vbz_compression/). Picopore simply applies

gzip compression to the raw data, while VBZ, which is the current state-of-the-art

tool, uses variable byte integer encoding followed by zstd compression. Although

VBZ reduces the size of the raw data by 60%, the compressed size is still quite signif-

icant and further reduction is desirable. However, obtaining further improvements in

lossless compression is challenging due to the inherently noisy nature of the current

measurements.

Figure 4.1: Illustration of nanopore sequencing, basecalling and consensus. The
bottom-left panel shows instances of basecalling and consensus errors, where the
consensus process is able to correct random errors but not systematic errors.

In this context, lossy compression is a natural candidate to provide a boost in

compression at the cost of certain amount of distortion in the raw signal. There have

been several works on lossy compression for time series data, including SZ [53] and

LFZip (Chapter 3) that provide a guarantee that the reconstruction lies within a cer-

tain user-defined interval of the original value for all time steps. However, in the case

of nanopore raw current signal, the metric of interest is not the maximum deviation

from the original value, but instead the impact on the performance of basecalling and

https://github.com/nanoporetech/vbz_compression/

CHAPTER 4. NANOPORE LOSSY COMPRESSION 46

other downstream analysis steps. In particular, two quantities of interest are the base-

calling accuracy and the consensus accuracy. The basecalling accuracy measures the

similarity of the basecalled read sequence to the known true genome sequence, while

the consensus accuracy measures the similarity of the consensus sequence obtained

from multiple overlapping reads to the known true genome sequence. As discussed

in [54], these two measures are generally correlated but can follow different trends

in the presence of systematic errors. In general, consensus accuracy can be thought

of as the higher-level metric, which is usually of interest in most applications, while

basecalling accuracy is a lower-level metric in the sequencing analysis pipeline. Figure

4.1 illustrates the sequencing, basecalling and consensus process.

In this chapter, we study the impact of lossy compression of nanopore raw sig-

nal data on basecalling and consensus accuracy. We evaluate the results for several

basecallers and at multiple stages of the consensus pipeline to ensure the results are

generalizable to future iterations of these tools. We find that lossy compression using

general-purpose tools can provide significant reduction in file sizes with negligible im-

pact on accuracy. To further stress-test the ability of lossy compression to preserve

useful information, we look into the impact of lossy compression on methylation call-

ing performance and reach similar conclusions as those for basecalling accuracy. To

the best of our knowledge, this is the first study exploring the use of lossy compres-

sion for nanopore raw signal data and performing a systematic analysis of its impact

on downstream applications. We believe our results provide motivation for research

into specialized lossy compressors for nanopore raw signal data and suggest the pos-

sibility of reducing the resolution of the raw signal generated on the nanopore de-

vice itself while preserving the downstream performance. The source code and data

for our analysis is publicly available at https://github.com/shubhamchandak94/

lossy_compression_evaluation and can be useful as a benchmarking pipeline for

further research into lossy compression for nanopore data.

https://github.com/shubhamchandak94/lossy_compression_evaluation
https://github.com/shubhamchandak94/lossy_compression_evaluation

CHAPTER 4. NANOPORE LOSSY COMPRESSION 47

4.2 Background

4.2.1 Nanopore sequencing and basecalling

Nanopore sequencing, specifically the MinION sequencer developed by Oxford Nanopore

Technologies (ONT) [50], involves a strand of DNA passing through a pore in a mem-

brane with a potential applied across it. Depending on the sequence of bases present

in the pore (roughly 6 bases at any instant), the ionic current passing through the pore

varies with time and is measured at a sampling frequency of 4 kHz. The sequencing

produces 5-15 current samples per base, which are quantized to a 16-bit integer and

stored as an array in a version of the HDF5 format called fast5. The current signal

is then processed by the basecaller to generate the basecalled read sequence and the

corresponding quality value information. In the uncompressed format, the raw cur-

rent signal requires close to 18 bytes per sequenced base which is significantly more

than the amount needed for storing the sequenced base and the associated quality

value. The sequenced FASTQ files can also be compressed further using specialized

compressors [55] to further reduce the storage costs.

Over the past years, there has been a shift in the basecalling strategy from a physi-

cal model-based approach to a machine learning-based approach leading to significant

improvement in basecalling accuracy (see [54] and [56] for a detailed review). In par-

ticular, the current default basecaller Guppy by ONT (based on open source tool Flap-

pie (https://github.com/nanoporetech/flappie)) uses a recurrent neural network

that generates transition probabilities for the bases which are then converted to the

most probable sequence of bases using Viterbi algorithm. Another recent basecaller

by ONT is bonito (https://github.com/nanoporetech/bonito/, currently experi-

mental), which is based on a convolutional neural network and CTC decoding [57],

achieving close to 92-95% basecalling accuracy in terms of edit distance. Despite

the progress in basecalling, the current error rates are still relatively high (typically

5-10%) with considerable fraction of insertion and deletion errors, which necessitates

the storage of the raw data for utilizing improvements in the basecalling technologies

for future (re)analysis.

https://github.com/nanoporetech/flappie
https://github.com/nanoporetech/bonito/

CHAPTER 4. NANOPORE LOSSY COMPRESSION 48

Raw current
signal data

Lossy compression
(LFZip and SZ) with
range of distortion
parameter values

Lossless VBZ
compression

Record
compressed

sizes

Reconstructed
raw signal

Original
raw signal

Basecalling and
read accuracy

evaluation

Basecallers:
Guppy (HAC)
Guppy (Fast)

Bonito

Subsample
FASTQ

Assembly,
consensus,

polishing and
accuracy evaluation

Stage 1: Flye
Stage 2: Rebaler
Stage 3: Medaka

Basecalled
reads in FASTQ

Original/reconstructed
raw signal

ATGACTA…
TGGAGGC…
GATCCGT…

(a) Lossless and lossy compression of raw signal data (b) Basecalling, consensus and methylation calling accuracy analysis

Methylation
calling and
evaluation
Megalodon

Figure 4.2: Flowchart showing the experimental procedure. (a) The raw data was
compressed with both lossless and lossy compression tools, (b) the original and loss-
ily compressed data was then basecalled with three basecalling tools. Finally, the
basecalled data and its subsampled versions were assembled and the assembly (con-
sensus) was polished using a three-step pipeline (1. Flye, 2. Rebaler, 3. Medaka). The
tradeoff between compressed size and basecalling/consensus accuracy was studied.
For one dataset, methylation calling and accuracy evaluation was performed using
Megalodon.

4.2.2 Assembly, consensus and polishing

Long nanopore reads allow much better repeat resolution and are able to capture

long-range information about the genome leading to significant improvements in de

novo genome assembly [51]. However genome assembly with nanopore data needs to

handle the much higher error rates as compared to second generation technologies

such as Illumina, and there have been several specialized assemblers for this purpose,

including Flye [58, 59] and Canu [60], some of which allow hybrid assembly with a

combination of short and long read data.

Nanopore de novo assembly is usually followed by a consensus step that improves

the assembly quality by aligning the reads to a draft assembly and then performing

consensus from overlapping reads (e.g., Racon [61]). Note that the consensus step can

be performed even without de novo assembly if a reference sequence for the species is

already available, in which case the alignment to the reference is used to determine the

overlap between reads. Further polishing of the consensus sequence can be performed

with tools specialized for nanopore sequencing that use the noise characteristics of

the sequencing and/or basecalling to find the most probable consensus sequence. For

example, Nanopolish [62] directly uses the raw signal data for polishing the consensus

CHAPTER 4. NANOPORE LOSSY COMPRESSION 49

using a probabilistic model for the generation of the raw signal from the genomic se-

quence. Medaka (https://nanoporetech.github.io/medaka/) is the current state-

of-the-art consensus polishing tool both in terms of runtime and accuracy (https://

github.com/rrwick/August-2019-consensus-accuracy-update/). Medaka uses a

neural network to perform the consensus from the pileup of the basecalled reads at

each position of the genome.

4.2.3 Methylation calling

DNA methylation plays an important role in various biological functions [63], with

6mA and 5mC being the most commonly studied methylated bases (methylated ver-

sions of A and C, respectively). Since nanopore sequencing can work with native (non-

PCR amplified) DNA, it is possible to detect methylated bases due to the changes in

the raw signal when the methylated base passes through the pore. This fact has been

exploited to develop methylation calling pipelines using various techniques includ-

ing hidden Markov model (HMM)-based methods and neural network-based meth-

ods [62, 63, 64, 65]. Here, we use Megalodon (https://github.com/nanoporetech/

megalodon/) which first anchors the intermediate probabilities produced by the base-

calling neural network (from Guppy basecalling modes that call both modified and

unmodified bases) to the reference sequence. It then uses traditional HMM algorithms

such as Viterbi and forward-backward algorithms [66] to compute the probability that

a given base is modified. This common framework can be used to call different types

of base modifications by providing the appropriate basecalling model, and we focus

on CpG motifs on the human genome in this chapter.

4.2.4 Lossy compression

Lossy compression [67] refers to compression of the data into a compressed bitstream

where the decompressed (reconstructed) data need not be exactly but only approxi-

mately similar to the original data. Lossy compression is usually studied in the context

of a distortion metric that specifies how the distortion or error between the original

https://nanoporetech.github.io/medaka/
https://github.com/rrwick/August-2019-consensus-accuracy-update/
https://github.com/rrwick/August-2019-consensus-accuracy-update/
https://github.com/nanoporetech/megalodon/
https://github.com/nanoporetech/megalodon/

CHAPTER 4. NANOPORE LOSSY COMPRESSION 50

and the reconstruction is measured. This gives rise to a tradeoff between the com-

pressed size and the distortion, referred to as the rate-distortion curve. Here, we work

with two state-of-the-art lossy compressors for time-series data, LFZip (Chapter 3)

and SZ [53]. Both these compressors work with a maxerror parameter that specifies

the maximum absolute deviation between the original and the reconstructed data.

If x1, . . . , xT denotes the original time-series, x̂1, . . . , x̂T denotes the reconstructed

time-series, and ε is the maxerror parameter, then these compressors guarantee that

maxt=1,...,T |xt − x̂t| < ε.

LFZip and SZ use slightly different approaches towards lossy compression. LFZip

uses a prediction-quantization-entropy coding approach, and here we use a mode

wherein the prediction step is skipped and LFZip simply performs uniform scalar

quantization (i.e., uniform binning with the bin size determined by the maxerror)

followed by entropy coding. This mode provided the best compression in our experi-

ments. SZ uses a curve fitting step followed by entropy coding, with the reconstruction

lying on a low-degree local polynomial approximation to the original data.

There are a couple of reasons for focusing on lossy compressors with maximum

absolute deviation as the distortion metric instead of mean square error or mean

absolute error in this work. The first reason is that the guaranteed maximum error

implies that the reconstructed raw signal is close to the original value at each and every

timestep and not only in the average sense. Hence, the maximum error distortion

metric is preferable for general applications where the true distortion metric is not

well understood. The second reason is the availability of efficient implementations

which is crucial for compressing the large genomic datasets. However, we believe

that there is significant scope for using mean square error and other metrics for

developing specialized lossy compressors for nanopore data given the better theoretical

understanding of those metrics.

4.3 Experiments

We next describe the experimental setup in detail (see Figure 4.2 for a flowchart

representation). The instructions for downloading the datasets and installing the

CHAPTER 4. NANOPORE LOSSY COMPRESSION 51

tools, as well as the scripts for performing the experiments are available on the GitHub

repository. The experiments were run on an Ubuntu 18.04.4 server with 40 Intel Xeon

processors (2.2 GHz), 260 GB RAM and 8 Nvidia TITAN X (Pascal) GPUs.

4.3.1 Datasets

Species Sample
Genome

GC-content
Flowcell Read Read length Approx. Raw signal size (GB)

Source
size (bp) type count N50 (bp) [54] depth Uncompressed VBZ (lossless)

Staphylococcus aureus CAS38 02 2.9×106 32.8% R9.4.1 11,047 24,666 83x 4.86 2.02 [54]
Klebsiella pneumoniae INF032 5.1×106 57.6% R9.4 15,154 37,181 108x 10.14 4.32 [54]

Escherichia coli K-12 MG1655 4.6×106 50.8% R10.3 92,000 7,431 128x 12.09 5.14 See Caption
Homo sapiens NA12878 3.1×109 40.9% R9.4 128,314 11,404 0.29x 25.37 10.31 [51]

Table 4.1: Datasets used for analysis. The E. coli dataset was obtained from http:

//albertsenlab.org/we-ar10-3-pretty-close-now/. N50 is a statistical measure
of average length of the reads. The uncompressed size column refers to storing the raw
signal in the default representation using 16 bits/signal value. The first three datasets
(bacterial) were used for basecalling and consensus accuracy evaluation, while the last
dataset (low-coverage human dataset from a single flowcell) was used for basecalling
and per-read methylation calling accuracy evaluation.

Table 4.1 shows the datasets used for analysis in this work. The first three bacterial

datasets were chosen to be representative datasets with different GC-content and

flowcell types, including the latest R10.3 pore. We note that some of the tools were not

run on the E. coli dataset since they do not yet support the R10.3 pore. For all these

datasets the ground-truth genomic sequence is known through hybrid assembly with

long and short read technologies. The table also shows the uncompressed and VBZ

compressed sizes for the datasets, we observe that lossless compression can provide size

reduction of roughly 60%. For each dataset, we run our analysis on both the original

read depth as well as subsampled versions of the datasets (2x, 4x and 8x subsampling

of Fastq files performed using Seqtk (https://github.com/lh3/seqtk/)). This helps

us understand how the impact of lossy compression on consensus accuracy depends

on read depth. The last dataset (human) is used for basecalling and methylation

calling accuracy evaluation, and we use one flowcell (FAB45280) of NA12878 human

nanopore data from [51] consisting of around 900M sequenced bases. For basecalling

accuracy evaluation, we generate the ground truth genome by applying the variants

http://albertsenlab.org/we-ar10-3-pretty-close-now/
http://albertsenlab.org/we-ar10-3-pretty-close-now/
https://github.com/lh3/seqtk/

CHAPTER 4. NANOPORE LOSSY COMPRESSION 52

from GIAB [68] to the reference genome. More details on the methylation calling

experiments are provided in Section 4.3.5.

We focus on using bacterial datasets rather than human datasets for consensus

accuracy evaluation for a few reasons similar to those cited in [54]. Firstly, bacterial

datasets typically have a more reliable ground truth allowing for more precise esti-

mation of the impact of lossy compression. This is especially important for consensus

accuracy which can be very high (& 99.9%), leading to a much greater uncertainty in

the evaluation due to errors in the ground truth sequence. The smaller size for bacte-

rial datasets also allows more extensive experimentation at higher coverage and across

several parameters. Due to these reasons, previous studies have often relied on bac-

terial datasets for consensus/assembly accuracy evaluation, and used human datasets

only for basecalling accuracy evaluation. (e.g., see the works [69] and [70] on novel

basecalling algorithms). In addition, lossy compression with maximum deviation con-

straint is typically local in nature, with LFZip in particular performing uniform scalar

quantization independently at each time step. Thus, the size of the genome should

not impact the analysis and the results should generalize to larger genomes. Further

experimentation on larger eukaryotic datasets remains part of future work as better

benchmark datasets are obtained.

We also looked into the possibility of using data from Zymo microbial commu-

nity standard [71] which has been used to evaluate basecallers and consensus tools.

However, we decided to use the previously described datasets for a couple of reasons.

Firstly, the Zymo dataset is a metagenomic dataset and obtaining data for indi-

vidual species requires additional analysis and introduces a possibility of erroneous

conclusions. Secondly, several neural network models in the downstream pipeline

(e.g., basecallers and Medaka consensus) are commonly trained on parts of the Zymo

dataset, with different tools using different training and testing genomes. This makes

the data unsuitable when comparing several tools due to overfitting concerns.

CHAPTER 4. NANOPORE LOSSY COMPRESSION 53

4.3.2 Lossy compression

To study the impact of lossy compression, we generate new fast5 datasets by re-

placing the raw signal in the original fast5 files with the reconstruction produced

by lossy compression. We use open source general-purpose time-series compres-

sors LFZip (version 1.1) and SZ [53] (version 2.1.8.3). Both the tools require a

parameter representing the maximum absolute deviation (maxerror) of the recon-

struction from the original. We conducted ten experiments for each tool by setting

the maxerror parameter to 1, 2, . . . , 10. To put this in context, note that for a typ-

ical current range of 60 pA and the typical noise value of 1-2 pA, the maxerror

settings of 1 and 10 correspond to current values of 0.17 pA and 1.7 pA, respec-

tively (https://github.com/nanoporetech/kmer_models/). Finally, we note that

both LFZip and SZ can compress millions of timesteps per second and hence can be

used to compress the nanopore raw signal data in real time as it is produced by the

sequencer.

4.3.3 Basecalling and consensus

We perform basecalling on the raw signal data (both original and lossily compressed)

using two modes of Guppy (version 3.6.1) as well as with bonito (version 0.2.0, note

that bonito is currently an experimental release). For Guppy, we use the default high

accuracy mode (guppy hac) and the fast mode (guppy fast). Both the modes use the

same general framework but differ in terms of the neural network architecture size

and weights. We use these three basecaller settings to study whether lossy compres-

sion leads to loss of useful information that can be potentially exploited by future

basecallers.

We use a three-step assembly, consensus and polishing pipeline based on the

analysis and recommendations in the addendum to [54]. The first step is de novo

assembly using Flye (version 2.7.1) [58, 59] which produces a basic draft assem-

bly. The second step is consensus polishing of the Flye assembly using Rebaler

(https://github.com/rrwick/Rebaler/, version v0.2.0) which runs multiple rounds

of Racon (version 1.4.13) to produce a high quality consensus of the reads. Finally,

https://github.com/nanoporetech/kmer_models/
https://github.com/rrwick/Rebaler/

CHAPTER 4. NANOPORE LOSSY COMPRESSION 54

the third step uses Medaka (version 1.0.3) by ONT that performs further polishing of

the Rebaler consensus using a neural network-based approach. Note that the neural

network model for Medaka needs to be chosen corresponding to the basecaller.

4.3.4 Evaluation metrics

For evaluating the basecalling and consensus accuracy, we use the pipeline presented

for the task of basecaller comparison in [54] and its addendum (https://github.com/

rrwick/August-2019-consensus-accuracy-update/). The basecalled reads were

aligned to the true genome sequence using minimap2 [72] and the read’s basecalled

identity was defined as the number of matching bases in the alignment divided by the

total alignment length. We report only the median identity across reads in the results

section (see GitHub for details on accessing the per-read results). The consensus

accuracy after each stage is computed in a similar manner, where instead of aligning

the reads, we split the assembly into 10 kbp pieces and then find median identity

across these pieces. Finally, we compute the basecalling and consensus Qscore using

the Phred scale as Qscore = −10 log10(1− identity) where the identity is represented

as a fraction. We refer the reader to [54] for further discussion on these metrics.

In addition, we evaluate the accuracy of homopolymer sequences in the consensus

using the fastmer.py script (https://github.com/jts/assembly_accuracy), since

homopolymer calling has been identified as one of the main challenges of nanopore

sequencing [56].

4.3.5 Methylation calling and evaluation

We consider the impact of lossy compression on methylation calling to understand

whether the loss in information due to compression leads to further degradation of

methylation calling performance as compared to basecalling, given that methylation

calling is a more sensitive task than basecalling. For evaluating this impact, we use

the pipeline and benchmark dataset used in two previous works, DeepMod [64] and

DeepSignal [65]. We use NA12878 human nanopore data from [51] which used native

(non-PCR amplified) DNA and use a benchmark obtained from bisulfite sequencing

https://github.com/rrwick/August-2019-consensus-accuracy-update/
https://github.com/rrwick/August-2019-consensus-accuracy-update/
https://github.com/jts/assembly_accuracy

CHAPTER 4. NANOPORE LOSSY COMPRESSION 55

from the ENCODE project (ENCFF835NTC) [73]. Following the procedure in [65],

we identify the high confidence positive and negative sites on the genome by restricting

ourselves to sites with coverage at least five, and 100% positive or negative calls on

both strands in the bisulfite dataset. This resulted in roughly 5.4M positive and 4.7M

negative high confidence sites on the genome.

We then used Megalodon (version 2.1.0) on the nanopore dataset to obtain a

list of per-read methylation calls (predicted probabilities) for each CpG motif in the

read. We used a basecalling model specially trained for calling CpG methylation

released in the Rerio repository (https://github.com/nanoporetech/rerio/). We

then computed the precision, recall and AUC (area under ROC curve), restricting

ourselves to the high confidence sites determined above. For the precision and recall

computation, we used a threshold of 0.5 for the predicted methylation probabilities.

As shown in Table 4.1, we used only one flowcell of data consisting of around 900M

sequenced bases. For this study, we focused exclusively on per-read evaluation and

did not attempt to compute correlation of the methylation frequencies with the bisul-

fite data as done in [65]. We believe that the per-read evaluation should be indicative

of the extent to which lossy compression leads to loss of information regarding methy-

lation. We also found other datasets in the previous works [63, 64, 65] where ground

truth positive and negative datasets were generated using methyltransferase enzyme

and PCR-amplification, respectively. However, these datasets were generated with

older pores (R7 or 2D technology) which are not supported by the modern methyla-

tion calling tools. Better benchmark datasets in the future can be helpful for more

extensive evaluation.

4.4 Results and discussion

We now discuss the main results obtained from the experiments described above.

Throughout the results and discussion, the compressed sizes for lossy compression

are shown relative to the compressed size for VBZ lossless compression, where the

lossless compression sizes are shown in Table 4.1. Additional results and plots are

available on GitHub.

https://github.com/nanoporetech/rerio/

CHAPTER 4. NANOPORE LOSSY COMPRESSION 56

Figure 4.3 shows the variation of the size of the lossily compressed dataset with

the maxerror parameter. We see that LFZip generally provides better compression

than SZ at the same maxerror value, although this fact by itself does not guarantee

a better tradeoff for the metrics of interest. We also see that lossy compression can

provide significant size reduction over lossless compression even with relatively small

maxerror (recall that maxerror of 1 in the 16-bit representation of the raw signal

corresponds to 0.17 pA error in the current value). For example, at maxerror of 5,

lossy compression can provide size reduction of around 50% over lossless compression

and size reduction of around 70% over the uncompressed 16-bit representation.

Both SZ and LFZip can compress millions of samples per second, with SZ being

about an order of magnitude faster than LFZip (Chapter 3). Since LFZip simply

performs uniform scalar quantization and entropy coding (in the mode used here),

we believe that it can be significantly optimized further for this application. We

also looked into the possibility that lossy compression could impact the speed/peak

memory usage of the steps in the downstream pipeline (basecalling, assembly, etc.),

however we observed that such effects were relatively small (.5-10% change) and

mostly attributable to experimental variation. The time and memory usage results

for various stages in the pipeline and the impact of lossy compression on these are

provided in section 4.4.4.

4.4.1 Basecalling accuracy

Figure 4.4 shows the tradeoff achieved between basecalling accuracy and compressed

size for the four datasets for all three basecallers. First, we observe that guppy hac

performs the best closely followed by bonito, and guppy fast is typically far behind.

As the maxerror parameter is increased, the basecalling accuracy stays stable for all

the basecallers till the compressed size reaches 65% of the losslessly compressed size.

For example, the basecalling accuracy for the S. aureus dataset with guppy hac is

∼96.1% for lossless compression, and ∼96.0% at a 35% size reduction. After this the

basecalling accuracy drops more sharply, becoming 2% lower than the original lossless

level when the maxerror parameter is 10. The drop seems to follow a similar trend for

CHAPTER 4. NANOPORE LOSSY COMPRESSION 57

1 2 3 4 5 6 7 8 9 10
maxerror

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Re
la

tiv
e

siz
e

(1
=l

os
sle

ss
)

Lossy compression sizes vs. maxerror parameter
LFZip
SZ

Figure 4.3: Compressed size for lossy compression with LFZip and SZ for the S.
aureus dataset as a function of the maxerror parameter. The compressed sizes are
shown relative to the VBZ lossless compression size.

all the basecallers and compressors, suggesting that at least 35% reduction in size over

lossless compression can be obtained without sacrificing basecalling accuracy. Note

that for maxerror parameter equal to 10, the allowed deviation of the reconstructed

raw signal is larger than the typical noise levels in sequencing, and hence lossy com-

pression probably leads to perceptible loss in the useful information contained in the

raw signal.

We observed that the impact of lossy compression on read lengths and the number

of aligned reads is negligible. This suggests that lossy compression generally leads

to local and small perturbations in the basecalled read and does not lead to major

structural changes in the read such as loss of information due to trimmed/shortened

reads. This is expected given that the lossy compressors used here guarantee that

the reconstructed signal is within a certain deviation from the original signal at each

time step.

CHAPTER 4. NANOPORE LOSSY COMPRESSION 58

(b) Klebsiella pneumoniae(a) Staphylococcus aureus

(c) Escherichia coli (d) Homo sapiens

Figure 4.4: Basecalling accuracy vs. compressed size for (a) S. aureus, (b) K. pneu-
moniae, (c) E. coli, and (d) H. sapiens datasets. The results are displayed for the
losslessly compressed data and the lossily compressed versions with LFZip and SZ
(with maxerror 1 to 10) for the four basecallers. The compressed sizes are shown
relative to the VBZ lossless compression size. Bonito was not run on E. coli due to
lack of support for the R10.3 pore.

CHAPTER 4. NANOPORE LOSSY COMPRESSION 59

(b) Klebsiella pneumoniae(a) Staphylococcus aureus

(c) Escherichia coli

Legend

Figure 4.5: Consensus accuracy vs. compressed size for (a) S. aureus, (b) K. pneu-
moniae and (c) E. coli datasets. The results are displayed for the polished Medaka
assembly for the losslessly compressed data and the lossily compressed versions with
LFZip and SZ (with maxerror 1 to 10) for the four basecallers. The compressed sizes
are shown relative to the VBZ lossless compression size. Bonito and guppy fast were
not used on E. coli due to lack of corresponding Medaka models for the R10.3 pore.

CHAPTER 4. NANOPORE LOSSY COMPRESSION 60

4.4.2 Consensus accuracy

Figures 4.5, 4.6(a) and 4.6(b) study the tradeoff between consensus accuracy and

compressed size (i) across basecallers for the final Medaka polished assembly, (ii)

across the assembly stages and (iii) across read depths in subsampled datasets, re-

spectively. As expected, we observe that the consensus accuracy is significantly higher

than basecalling accuracy across these experiments. We also observe that the consen-

sus accuracy stays at the original lossless level till the compressed size reaches around

40-50% of the losslessly compressed size (50-60% reduction) and the drop in accuracy

beyond this is relatively small. For example, the consensus accuracy for the S. aureus

dataset with guppy hac is ∼99.997% for lossless compression, and stays the same at

a 50% size reduction. Thus, the impact of lossy compression on consensus accuracy is

less severe than that on basecalling accuracy. This suggests that the errors introduced

by lossy compression are generally random in nature and are mostly corrected by the

consensus process.

In our experiments, lossy compression did not affect the number of assembled

contigs (always 1) and the contig length in most cases. The only exceptions were

the 4x and 8x subsampled versions of the E. coli dataset where the assemblies for

both the lossless and the lossily compressed datasets were fragmented. This might

be due to lower data quality as evidenced by the significantly smaller read lengths

for this dataset (see Table 4.1). In general, this again suggests that the impact

of lossy compression is localized and without large-scale disruptions in the assem-

bly/consensus process, although further experiments on larger eukaryotic genomes

might be required to strengthen this claim.

Figure 4.6(a) considers the consensus accuracy after each stage of the assem-

bly/consensus process (Flye, Rebaler, Medaka) for the S. aureus dataset basecalled

with guppy hac. We see that each stage leads to further improvement in the con-

sensus accuracy. We also observe that the earlier stages of the pipeline are impacted

more heavily by lossy compression (in terms of percentage reduction in accuracy)

than the final Medaka stage. This is expected since each successive stage of the as-

sembly/consensus pipeline provides further correction of the basecalling errors caused

due to lossy compression. This effect is similar to the equalizing effect of polishing

CHAPTER 4. NANOPORE LOSSY COMPRESSION 61

(a) (b)

Figure 4.6: (a) Consensus accuracy vs. compressed size after each assembly step
(Flye, Rebaler, Medaka) for the S. aureus dataset basecalled with guppy hac. (b)
Consensus accuracy (Medaka polished) vs. compressed size for subsampled versions
(original, 2X subsampled, 4X subsampled, 8X subsampled) of the S. aureus dataset
basecalled with guppy hac. The results are displayed for the losslessly compressed
data and the lossily compressed versions with LFZip and SZ (with maxerror 1 to 10).
The compressed sizes are shown relative to the VBZ lossless compression size.

applied to different basecallers observed in [54]. We see a similar trend for the other

dataset and analysis tools (available on GitHub).

Figure 4.6(b) studies the impact of subsampling to lower read depths on the

consensus accuracy (after Medaka polishing) for the S. aureus dataset basecalled

with guppy hac. Note that the original dataset has around 80x depth of coverage,

so 8x subsampling produces a depth of 10x which is generally considered quite low.

We observe that lossy compression has more severe impact on consensus accuracy for

lower depths, but 40-50% of size reduction can still be achieved without sacrificing the

accuracy. This is again expected because consensus works better with higher depth

datasets and is able to correct a greater fraction of the basecalling errors. We see a

similar trend for the other dataset and analysis tools (available on GitHub).

Figure 4.7 considers the accuracy of homopolymers (of length 5 to 8) for the

Medaka polished assembly of the S. aureus dataset basecalled with guppy hac. We

see that the impact of lossy compression is more pronounced for longer homopolymer

sequences which are harder for the basecaller and assembly tools to handle, with

around 30% size reduction over lossless compression possible with negligible impact

CHAPTER 4. NANOPORE LOSSY COMPRESSION 62

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative compressed size (1=lossless)

0.985

0.990

0.995

1.000

1.005

1.010

1.015

5m
er

 a
cc

ur
ac

y

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative compressed size (1=lossless)

0.985

0.990

0.995

1.000

1.005

1.010

1.015

6m
er

 a
cc

ur
ac

y

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative compressed size (1=lossless)

0.975

0.980

0.985

0.990

0.995

1.000

1.005

7m
er

 a
cc

ur
ac

y

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative compressed size (1=lossless)

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

8m
er

 a
cc

ur
ac

y

lossless LFZip SZ

Figure 4.7: Consensus accuracy (Medaka polished) for homopolymer sequences of
length 5 to 8 for the S. aureus dataset basecalled with guppy hac. The results are
displayed for the losslessly compressed data and the lossily compressed versions with
LFZip and SZ (with maxerror 1 to 10). The compressed sizes are shown relative to
the VBZ lossless compression size.

CHAPTER 4. NANOPORE LOSSY COMPRESSION 63

on the accuracy. Thus, depending on the requirements, a lower maxerror parameter

should be chosen to achieve higher accuracy for the longer homopolymer sequences.

We believe it should be possible to overcome this challenge by designing specialized

lossy compressors and by training the models in the basecalling and consensus pipeline

on the lossily compressed data. We see a similar trend for other subsampling levels

and other datasets (available on GitHub).

Overall, we observe that both LFZip and SZ can be used as tools to significantly

save on space without sacrificing basecalling and consensus accuracy. The savings

in space are close to 50% over lossless compression and 70% over the uncompressed

representation. While it is not possible to say with certainty that we don’t lose

any information in the raw signal that might be utilized by future basecallers, the

results for the different basecallers and consensus stages suggest that applying lossy

compression (for a certain range of parameters) only affects the noise in the raw

signal without affecting the useful components. Finally, the decision to apply lossy

compression and the extent of lossy compression should be based on the read depth

(coverage), with more savings possible at higher depths where consensus accuracy is

the metric of interest.

Figure 4.8: Precision, recall and AUC (area under ROC curve) for NA12878 CpG
methylation calling using Megalodon. The metrics are computed for per-read methy-
lation calls. For the precision and recall, a probability threshold of 0.5 was used for
the predicted methylation probabilities. The results are displayed for the losslessly
compressed data and the lossily compressed versions with LFZip and SZ (with maxer-
ror 1 to 10). The compressed sizes are shown relative to the VBZ lossless compression
size.

CHAPTER 4. NANOPORE LOSSY COMPRESSION 64

4.4.3 Methylation calling accuracy

Figure 4.8 shows the precision, recall and AUC for CpG methylation calling on the

NA12878 H. sapiens dataset. Across the >128K reads, there were roughly 670K

positive ground truth positions and 560K negative ground truth positions after align-

ment. Recall that only genomic positions with sufficiently high confidence regarding

the methylation status from bisulfite data were considered for the evaluation (∼5.4M

positive and ∼4.7M negative sites on genome, counting both strands). The achieved

precision, recall and AUC were roughly 0.945, 0.845 and 0.945 respectively. As seen

in the figure, the impact of lossy compression is similar to that on basecalling ac-

curacy, with negligible impact for compression gains around 35-40% over lossless

compression. This is despite the fact that methylation calling is generally consid-

ered a harder problem than basecalling due to the increased resolution needed for

it. Further benchmarking using improved benchmark datasets in the future can be

performed to strengthen these conclusions.

4.4.4 Time and memory usage

In this section, we provide the time and peak memory usage for lossy/lossless com-

pression, as well as for the steps in the downstream analysis. We focus on the S.

aureus dataset, with three settings of maxerror (1, 5, 10) for the lossy compressors,

and basecalling done with the default basecaller Guppy (high accuracy mode). The

three maxerror settings allow comparison across different levels of lossy compression.

All experiments were performed on an Ubuntu 18.04.4 server with 40 Intel Xeon pro-

cessors (2.2 GHz), 260 GB RAM and 8 Nvidia TITAN X (Pascal) GPUs. The default

Python version was 3.7.6 (Anaconda).

Table 4.2 shows the time and memory usage for the compression stage. Due to

the way the time was measured, for lossy compressors (LFZip, SZ) it includes the

time for loading the reads from the original fast5, compressing the raw signal, decom-

pressing, and writing the reconstructed signal to a new fast5. For lossless compressor

VBZ, the time includes the time for loading the reads from the original fast5 and

compressing the raw signal. Also note that we ran VBZ in the highest compression

CHAPTER 4. NANOPORE LOSSY COMPRESSION 65

Mode Time (s) Peak memory (MB) Average #samples/s
VBZ (lossless) 2135 91.5 1.14M

LFZip (maxerror 1) 4117 64.6 0.59M
SZ (maxerror 1) 814 66.9 2.99M

LFZip (maxerror 5) 3998 67.9 0.61M
SZ (maxerror 5) 773 68.2 3.14M

LFZip (maxerror 10) 3879 67.9 0.63M
SZ (maxerror 10) 697 68.1 3.49M

Table 4.2: Time and peak memory usage for compression+decompression of the S.
aureus dataset for different compressors and maxerror parameters. The lossless com-
pression time only includes the compression time. The last column shows the average
number of raw signal samples handled per second, where the total number of raw
signal samples for this dataset is roughly 2.43 billion.

mode (22) since we aimed to compare with the state-of-the-art lossless compressor.

The default application with lower compression mode (1) can be significantly faster.

All compressors were run on the CPU with a single thread.

From Table 4.2, we see that generally SZ is 5-6 times faster than LFZip, and

the compression speed slightly increases with higher maxerror settings. Note that

the lossy compression speed is in the order of millions of raw signal samples per

second, while the nanopore sampling frequency is 4000 samples/s for DNA pores.

Thus, it should be possible to integrate lossy compression in a real-time manner

with the sequencing process, especially upon improved integration with the pipeline

and further optimization. We note that the peak memory usage is independent of the

number of reads, and hence shouldn’t be a factor in the scalability of these algorithms.

Table 4.3 shows the time and memory usage for Guppy (high accuracy), which

was run using a GPU. We see a very small increase in the time and memory usage for

lossy compression as compared to lossless compression, but it is hard to distinguish

from experimental noise and we can conclude that the impact of lossy compression

the computational requirements for basecalling is relatively minor for this dataset.

Tables 4.4, 4.5 and 4.6 show the time and memory usage for the three assem-

bly/consensus stages: Flye, Rebaler and Medaka, respectively. All three tools were

run using 8 CPU threads. We see a small variation in the time and memory usage for

CHAPTER 4. NANOPORE LOSSY COMPRESSION 66

Mode Time (s) Peak memory (GB)
VBZ (lossless) 927 6.20

LFZip (maxerror 1) 969 7.42
SZ (maxerror 1) 952 6.67

LFZip (maxerror 5) 1005 6.68
SZ (maxerror 5) 997 6.78

LFZip (maxerror 10) 989 7.14
SZ (maxerror 10) 979 6.97

Table 4.3: Time and peak memory usage for Guppy (high accuracy) basecalling of
the S. aureus dataset for different compressors and maxerror parameters.

Mode Time (s) Peak memory (GB)
VBZ (lossless) 1020 4.58

LFZip (maxerror 1) 1003 4.31
SZ (maxerror 1) 1054 5.12

LFZip (maxerror 5) 1007 4.49
SZ (maxerror 5) 993 4.53

LFZip (maxerror 10) 885 4.47
SZ (maxerror 10) 936 4.05

Table 4.4: Time and peak memory usage for Flye assembly of the S. aureus dataset
for different compressors and maxerror parameters.

Mode Time (s) Peak memory (GB)
VBZ (lossless) 1088 1.04

LFZip (maxerror 1) 1100 1.01
SZ (maxerror 1) 1102 0.97

LFZip (maxerror 5) 1122 1.03
SZ (maxerror 5) 1111 1.04

LFZip (maxerror 10) 1178 1.23
SZ (maxerror 10) 1189 1.19

Table 4.5: Time and peak memory usage for Rebaler consensus of the S. aureus
dataset for different compressors and maxerror parameters.

CHAPTER 4. NANOPORE LOSSY COMPRESSION 67

Mode Time (s) Peak memory (GB)
VBZ (lossless) 109 8.07

LFZip (maxerror 1) 93 8.13
SZ (maxerror 1) 93 8.82

LFZip (maxerror 5) 95 7.66
SZ (maxerror 5) 95 7.34

LFZip (maxerror 10) 98 9.95
SZ (maxerror 10) 98 9.11

Table 4.6: Time and peak memory usage for Medaka polishing of the S. aureus dataset
for different compressors and maxerror parameters.

lossy compression as compared to lossless compression (particularly at high maxer-

ror), but generally the variation is hard to distinguish from experimental noise and we

can conclude that the impact of lossy compression the computational requirements

for assembly/consensus is relatively minor.

4.5 Conclusions and future work

In this chapter, we explored the use of lossy compression for nanopore raw data and

its impact on the basecalling and consensus accuracy. We found that lossy com-

pression with existing tools can reduce the compressed size by 35-50% over lossless

compression with less than 0.2% percent reduction in basecalling accuracy. The im-

pact on consensus accuracy is even lower with less than 0.002% reduction at similar

compression levels. Similar conclusions hold across datasets at different depths of

coverage as well as several basecalling and assembly stages (with slight variation in

the impact due to baseline lossless levels), suggesting that lossy compression with

appropriate parameters does not lead to loss of useful information in the raw signal.

For datasets with high depth of coverage, even further reduction is possible without

sacrificing consensus accuracy. The analysis pipeline and data, partly based on [54]

and its addendum, are available online on GitHub along with documentation and can

be useful for further experimentation and development of specialized lossy compres-

sors for nanopore raw signal data, which is part of future work. Further experiments

on methylation accuracy evaluation and assembly for larger eukaryotic genomes are

CHAPTER 4. NANOPORE LOSSY COMPRESSION 68

also part of future work, contingent upon the availability of improved benchmark

datasets.

We believe that further research in this direction can lead to lossy compression

algorithms tuned to the specific structure of the nanopore data and the evaluation

metrics of interest, leading to further reduction in the compressed size. Further re-

search into modeling the raw signal and the noise characteristics can help in this front.

Another interesting direction could be the possibility of jointly designing the lossy

compression with the modification of the algorithms in the downstream applications

to match this compression. In particular, the current neural network models used in

the basecallers can be retrained on the lossily compressed data to further understand

the loss in information due to lossy compression. Finally, just as research on impact of

lossy compression of Illumina quality scores on variant calling [74, 75] led to Illumina

reducing the default resolution of quality scores, it might be interesting to explore

a similar possibility for nanopore data by performing the lossy compression or data

binning on the nanopore sequencing device itself.

Chapter 5

Concluding Remarks

This thesis considered the problem of compression of raw genomic data. Given the

breathtaking growth in the data volume, we saw that general-purpose compressors

are no longer sufficient for efficient storage, transfer, and analysis of this data. Thus,

we proposed specialized compressors that exploit the structure in the data using

an underlying information-theoretic framework. We also explored the use of lossy

compression of genomic data to achieve further size reduction by removing irrelevant

details and noise while preserving the information we care about. The proposed tools

perform well on real-world genomic data, achieving significant reduction in the size

while being computationally practical.

69

Bibliography

[1] Shubham Chandak et al. SPRING: a next-generation compressor for FASTQ

data. Bioinformatics, 35(15):2674–2676, 12 2018.

[2] Shubham Chandak et al. LFZip: Lossy compression of multivariate floating-point

time series data via improved prediction. In 2020 Data Compression Conference

(DCC), pages 342–351. IEEE, 2020.

[3] Shubham Chandak et al. Impact of lossy compression of nanopore raw signal data

on basecalling and consensus accuracy. Bioinformatics, 36(22-23):5313–5321, 12

2020.

[4] Ibrahim Numanagić et al. Comparison of high-throughput sequencing data com-

pression tools. Nature Methods, 13(12):1005, 2016.

[5] Faraz Hach et al. SCALCE: boosting sequence compression algorithms using

locally consistent encoding. Bioinformatics, 28(23):3051–3057, 2012.

[6] James K Bonfield and Matthew V Mahoney. Compression of FASTQ and SAM

format sequencing data. PloS one, 8(3):e59190, 2013.

[7] Lukasz Roguski and Sebastian Deorowicz. DSRC 2-Industry-oriented compres-

sion of FASTQ files. Bioinformatics, 30(15):2213–2215, 2014.

[8] Lukasz Roguski et al. Fastore: a space-saving solution for raw sequencing data.

Bioinformatics, 34(16):2748–2756, 2018.

[9] Idoia Ochoa et al. Effect of lossy compression of quality scores on variant calling.

Briefings in Bioinformatics, 18(2):183–194, 2017.

70

BIBLIOGRAPHY 71

[10] Greg Malysa et al. QVZ: lossy compression of quality values. Bioinformatics,

31(19):3122–3129, 2015.

[11] Shubham Chandak et al. Compression of genomic sequencing reads via hash-

based reordering: algorithm and analysis. Bioinformatics, 34(4):558–567, 2018.

[12] Peter J. A. Cock et al. The Sanger FASTQ file format for sequences with qual-

ity scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Research,

38(6):1767–1771, 2010.

[13] Illumina. Illumina technical note, “Quality Scores for Next-Generation

Sequencing”, https://www.illumina.com/documents/products/technotes/

technote_Q-Scores.pdf, .

[14] Illumina. Illumina technical note, “Reducing Whole-Genome Data Storage

Footprint”, https://www.illumina.com/documents/products/whitepapers/

whitepaper_datacompression.pdf, .

[15] R. Long et al. Genecomp, a new reference-based compressor for sam files. In

2017 Data Compression Conference (DCC), pages 330–339, April 2017.

[16] Michael A. Eberle et al. A reference data set of 5.4 million phased human variants

validated by genetic inheritance from sequencing a three-generation 17-member

pedigree. Genome Research, 27(1):157–164, 2017.

[17] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with

bwa-mem. arXiv preprint arXiv:1303.3997, 2013.

[18] Tomasz M Kowalski and Szymon Grabowski. PgRC: pseudogenome-based read

compressor. Bioinformatics, 36(7):2082–2089, 12 2019.

[19] Sebastian Deorowicz. Fqsqueezer: k-mer-based compression of sequencing data.

Scientific reports, 10(1):1–9, 2020.

[20] Claudio Alberti et al. An introduction to MPEG-G, the new ISO standard for

genomic information representation. bioRxiv, 2018.

https://www.illumina.com/documents/products/technotes/technote_Q-Scores.pdf
https://www.illumina.com/documents/products/technotes/technote_Q-Scores.pdf
https://www.illumina.com/documents/products/whitepapers/whitepaper_datacompression.pdf
https://www.illumina.com/documents/products/whitepapers/whitepaper_datacompression.pdf

BIBLIOGRAPHY 72

[21] Idoia Ochoa et al. Effect of lossy compression of quality scores on variant calling.

Briefings in bioinformatics, 18(2):183–194, 2016.

[22] Allen Gersho and Robert M Gray. Vector quantization and signal compression,

volume 159. Springer Science & Business Media, 2012.

[23] Peter Lindstrom and Martin Isenburg. Fast and efficient compression of

floating-point data. IEEE transactions on visualization and computer graphics,

12(5):1245–1250, 2006.

[24] EH Bristol. Swinging door trending: Adaptive trend recording? In ISA National

Conf. Proc., 1990, pages 749–754, 1990.

[25] George Edward Williams. Critical aperture convergence filtering and systems

and methods thereof, July 11 2006. US Patent 7,076,402.

[26] EVSystems Data Solutions. https://www.evsystems.net/knowledge_base.

[27] OSIsoft. https://livelibrary.osisoft.com/LiveLibrary.

[28] Sheng Di and Franck Cappello. Fast error-bounded lossy HPC data compres-

sion with SZ. In 2016 IEEE International Parallel and Distributed Processing

Symposium (IPDPS), pages 730–739. IEEE, 2016.

[29] Dingwen Tao et al. Significantly improving lossy compression for scientific

data sets based on multidimensional prediction and error-controlled quantiza-

tion. In 2017 IEEE International Parallel and Distributed Processing Symposium

(IPDPS), pages 1129–1139. IEEE, 2017.

[30] Xin Liang et al. Error-controlled lossy compression optimized for high compres-

sion ratios of scientific datasets. In 2018 IEEE International Conference on Big

Data (Big Data), pages 438–447. IEEE, 2018.

[31] Xin Liang et al. An efficient transformation scheme for lossy data compression

with point-wise relative error bound. In 2018 IEEE International Conference on

Cluster Computing (CLUSTER), pages 179–189. IEEE, 2018.

https://www.evsystems.net/knowledge_base
https://livelibrary.osisoft.com/LiveLibrary

BIBLIOGRAPHY 73

[32] Sriram Lakshminarasimhan et al. ISABELA for effective in situ compression

of scientific data. Concurrency and Computation: Practice and Experience,

25(4):524–540, 2013.

[33] Zhengzhang Chen et al. NUMARCK: machine learning algorithm for resiliency

and checkpointing. In Proceedings of the International Conference for High Per-

formance Computing, Networking, Storage and Analysis, pages 733–744. IEEE

Press, 2014.

[34] S Edward Hawkins III and Edward Hugo Darlington. Algorithm for compressing

time-series data. NASA Tech Briefs, 2012.

[35] Naoto Sasaki et al. Exploration of lossy compression for application-level check-

point/restart. In 2015 IEEE International Parallel and Distributed Processing

Symposium, pages 914–922. IEEE, 2015.

[36] Douglas O’Shaughnessy. Linear predictive coding. IEEE potentials, 7(1):29–32,

1988.

[37] Webp. https://developers.google.com/speed/webp/. Accessed: 2019-10-22.

[38] Christian Feller et al. The VP8 video codec-overview and comparison to H.

264/AVC. In 2011 IEEE International Conference on Consumer Electronics-

Berlin (ICCE-Berlin), pages 57–61. IEEE, 2011.

[39] Mohit Goyal et al. DeepZip: Lossless Data Compression Using Recurrent Neural

Networks. In 2019 Data Compression Conference (DCC), pages 575–575. IEEE,

2019.

[40] Qian Liu et al. DecMac: A Deep Context Model for High Efficiency Arithmetic

Coding. In 2019 International Conference on Artificial Intelligence in Informa-

tion and Communication (ICAIIC), pages 438–443. IEEE, 2019.

[41] Matteo Pagin and Maurits Ortmanns. A neural data lossless compression scheme

based on spatial and temporal prediction. In 2017 IEEE Biomedical Circuits and

Systems Conference (BioCAS), pages 1–4. IEEE, 2017.

https://developers.google.com/speed/webp/

BIBLIOGRAPHY 74

[42] Ilya Grebnov. BSC. http://libbsc.com/, 2015.

[43] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[44] Allan Stisen et al. Smart devices are different: Assessing and mitigating mobile

sensing heterogeneities for activity recognition. In Proceedings of the 13th ACM

Conference on Embedded Networked Sensor Systems, pages 127–140. ACM, 2015.

[45] Individual household electric power consumption Data Set. https:

//archive.ics.uci.edu/ml/datasets/Individual+household+electric+

power+consumption. Accessed: 2019-10-22.

[46] Philip Schmidt et al. Introducing WESAD, a Multimodal Dataset for Wear-

able Stress and Affect Detection. In Proceedings of the 2018 on International

Conference on Multimodal Interaction, pages 400–408. ACM, 2018.

[47] Ramon Huerta et al. Online decorrelation of humidity and temperature in chem-

ical sensors for continuous monitoring. Chemometrics and Intelligent Laboratory

Systems, 157:169–176, 2016.

[48] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[49] Günther Foidl. Swinging Door. https://github.com/gfoidl/

DataCompression.

[50] Miten Jain et al. The Oxford Nanopore MinION: delivery of nanopore sequencing

to the genomics community. Genome biology, 17(1):239, 2016.

[51] Miten Jain et al. Nanopore sequencing and assembly of a human genome with

ultra-long reads. Nature biotechnology, 36(4):338, 2018.

[52] Scott Gigante. Picopore: a tool for reducing the storage size of oxford nanopore

technologies datasets without loss of functionality. F1000Research, 6, 2017.

[53] Xin Liang et al. Error-controlled lossy compression optimized for high compres-

sion ratios of scientific datasets. In 2018 IEEE International Conference on Big

Data (Big Data), pages 438–447. IEEE, 2018.

http://libbsc.com/
https://github.com/fchollet/keras
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://github.com/gfoidl/DataCompression
https://github.com/gfoidl/DataCompression

BIBLIOGRAPHY 75

[54] Ryan R Wick et al. Performance of neural network basecalling tools for Oxford

Nanopore sequencing. Genome biology, 20(1):129, 2019.

[55] Guillermo Dufort y Álvarez et al. ENANO: Encoder for NANOpore FASTQ files.

Bioinformatics, 05 2020. btaa551.

[56] Franka J Rang et al. From squiggle to basepair: computational approaches for

improving nanopore sequencing read accuracy. Genome biology, 19(1):90, 2018.

[57] Alex Graves et al. Connectionist temporal classification: labelling unsegmented

sequence data with recurrent neural networks. In Proceedings of the 23rd inter-

national conference on Machine learning, pages 369–376, 2006.

[58] Mikhail Kolmogorov et al. Assembly of long, error-prone reads using repeat

graphs. Nature biotechnology, 37(5):540–546, 2019.

[59] Yu Lin et al. Assembly of long error-prone reads using de Bruijn graphs. Pro-

ceedings of the National Academy of Sciences, 113(52):E8396–E8405, 2016.

[60] Sergey Koren et al. Canu: scalable and accurate long-read assembly via adaptive

k-mer weighting and repeat separation. Genome research, 27(5):722–736, 2017.

[61] Robert Vaser et al. Fast and accurate de novo genome assembly from long

uncorrected reads. Genome research, 27(5):737–746, 2017.

[62] Nicholas J Loman et al. A complete bacterial genome assembled de novo using

only nanopore sequencing data. Nature methods, 12(8):733–735, 2015.

[63] Jared T Simpson et al. Detecting DNA cytosine methylation using nanopore

sequencing. Nature methods, 14(4):407–410, 2017.

[64] Qian Liu et al. Detection of DNA base modifications by deep recurrent neural

network on Oxford Nanopore sequencing data. Nature communications, 10(1):1–

11, 2019.

[65] Peng Ni et al. DeepSignal: detecting DNA methylation state from Nanopore

sequencing reads using deep-learning. Bioinformatics, 35(22):4586–4595, 2019.

BIBLIOGRAPHY 76

[66] Lawrence R Rabiner. A tutorial on hidden markov models and selected applica-

tions in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[67] Allen Gersho and Robert M Gray. Vector quantization and signal compression,

volume 159. Springer Science & Business Media, 2012.

[68] Justin M Zook et al. Extensive sequencing of seven human genomes to charac-

terize benchmark reference materials. Scientific data, 3(1):1–26, 2016.

[69] Haotian Teng et al. Chiron: translating nanopore raw signal directly into nu-

cleotide sequence using deep learning. GigaScience, 7(5), 04 2018. giy037.

[70] Jingwen Zeng et al. Causalcall: Nanopore basecalling using a temporal convolu-

tional network. Frontiers in Genetics, 10:1332, 2020.

[71] Samuel M Nicholls et al. Ultra-deep, long-read nanopore sequencing of mock

microbial community standards. Gigascience, 8(5):giz043, 2019.

[72] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics,

34(18):3094–3100, 2018.

[73] ENCODE-Project-Consortium et al. An integrated encyclopedia of dna elements

in the human genome. Nature, 489(7414):57–74, 2012.

[74] Y William Yu et al. Quality score compression improves genotyping accuracy.

Nature biotechnology, 33(3):240–243, 2015.

[75] Idoia Ochoa et al. Effect of lossy compression of quality scores on variant calling.

Briefings in bioinformatics, 18(2):183–194, 2017.

	Abstract
	Acknowledgements
	Introduction
	SPRING: a next-generation compressor for FASTQ data
	Introduction
	Methods
	FASTQ files
	SPRING

	Main results
	Additional results
	Field-wise compression results
	Comparison with alignment + SAM compression
	Long read compression
	Decompressing subset of reads
	Results for variable length short reads
	Quality value lossy compression modes
	Impact of number of threads
	Impact of block size
	Impact of read reordering on ID compression
	Improvements in reordering stage

	Conclusions

	LFZip: Lossy compression of multivariate floating-point time series data via improved prediction
	Introduction
	Our Contributions
	Previous Work

	Methods
	Encoding and Decoding Framework
	Predictors

	Results
	Experimental setup
	Results for LFZip (NLMS) for univariate time series data
	Results for LFZip (NLMS) for multivariate time series data
	LFZip (NLMS) ablation experiments
	Results for LFZip (NN) for univariate time series data
	Computational requirements

	Conclusion

	Impact of lossy compression of nanopore raw signal data on basecalling and consensus accuracy
	Introduction
	Background
	Nanopore sequencing and basecalling
	Assembly, consensus and polishing
	Methylation calling
	Lossy compression

	Experiments
	Datasets
	Lossy compression
	Basecalling and consensus
	Evaluation metrics
	Methylation calling and evaluation

	Results and discussion
	Basecalling accuracy
	Consensus accuracy
	Methylation calling accuracy
	Time and memory usage

	Conclusions and future work

	Concluding Remarks
	Bibliography

