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Abstract

Understanding land use patterns and atmospheric con-
ditions through satellite images may be crucial in tackling
the global challenge of rapid deforestation. In this project,
we propose CNN-based methods for performing automated
multi-label classification of satellite images of the Amazon
basin with respect to the factors described above using a
dataset provided by Planet Labs, which is hosting a Kaggle
competition for this task. This paper details the different
models we experimented with and evaluated according to
the F2 performance metric. This includes models tailored
to the specific classification task that were developed from
scratch, as well as models that were built on fine-tuned Im-
ageNet pre-trained models via transfer learning. Our best
submission so far achieves an F2 score of 0.93142 on the
Kaggle test set and is ranked 11th on the leaderboard.

1. Introduction
Rapid deforestation in the Amazon basin and other

forests has led to reduced biodiversity, climate change
and other severe effects on life on the planet. Many acres
of forest land are being lost every day and many wildlife
species are losing their natural habitat and facing extinction.
One of the ways to tackle this global challenge is to capture
high quality image data and analyze it to understand and
build effective solutions.

With widespread satellite deployment, it is now feasible
to capture satellite images of the region at frequent intervals
and at a high resolution. High resolution imagery has
been found to be very helpful in differentiating between
man-made and natural causes of deforestation, but robust
methods for performing this have not yet been developed.
Automated classification of these images according to
atmospheric conditions and land use will enable us to
quickly and effectively respond to deforestation and other
harmful human encroachments.

To this end, Planet Labs Inc. has proposed a Kaggle
challenge- Planet: Understanding the Amazon from Space
[4], which we are participating in as part of this project.
For this competition, Planet Labs has provided a dataset of
3 - 5 meter resolution satellite images of the Amazon basin
and posed the challenge of designing algorithms to label
satellite image chips with respect to atmospheric conditions
and various classes of land cover/land use. The problem
is a multi-label classification problem for satellite images.
There are a total of 17 labels: 4 labels for the weather
conditions and the rest for land cover/land use patterns.
Example images and their labels are shown in Figure 1.
The true labels for the training images are provided to us,
but not those for the test images. The submissions are
ranked on the basis of average F2 score [24] over the test
set which is a function of the number of false negatives and
false positives, with a larger emphasis on false negatives.
The Kaggle leaderboard provides us with a benchmark to
evaluate our performance against other competitors.

We approach the problem by starting with CNN models
for image classification and modifying them to account for
the unique challenges posed here, which include (1) multi-
label classification instead of single-label classification (2)
highly imbalanced classes in the training set (3) 4-channel
satellite images and (4) an intricate dependence between the
classes. We tried various architectures including pre-trained
ImageNet [22] models and hand-made CNN models. We
also experimented with various methods for dealing with
multi-label classification, including a single network out-
putting scores for all 17 classes and separate networks for
subsets of related classes. The rest of the paper details the
different model architectures and the efficacy of individual
experiments in maximizing the overall F2 score.

2. Related Work
The existing literature on multi-label classification and
satellite image classification proved to be very beneficial as
it provided us with a baseline framework to build our model
off of and some general experimentation ideas.
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Figure 1. Example images from the dataset and their labels (Source: [4])

2.1. Multi-label classification

An important characteristic of the training dataset is that
each image can have multiple labels. Multi-label classifica-
tion has been studied in a variety of domains such as bioin-
formatics, music and text classification. BP-MLL [28] is a
neural network algorithm that tried to tackle this problem
using a novel pairwise ranking loss function to exploit the
relationships among labels. However, [18] found that the
cross-entropy loss was as good as the pairwise ranking loss
and that neural networks trained with cross-entropy loss
can encode dependencies among labels in the final layer.
Equipped with this intuition and coming across successful
models, such as [14], that used cross-entropy loss for multi-
label image annotation, we also decided to use it.

2.2. Satellite image classification

Several works have explored the problem of land use classi-
fication using traditional machine learning approaches. [20]
used Decision Trees, [9] considered Random Forests, and
[12] used Support Vector Machines (SVM) with Radial Ba-
sis Function (RBF) and polynomial kernels. Neural Net-
works were employed in [29, 15]. However the datasets
considered in all these papers are much smaller than the
one provided by Planet Labs which we use in this project.
In most works on land cover classification, pixel values are
directly used as features. [26] compared SIFT descriptors
and Gabor filters as features instead of raw pixel values.
Popular datasets used to benchmark satellite image classifi-
cation algorithms include UCMerced Land-use dataset [27]
and RS19 dataset [25]. UCMerced Land-use is a publicly
available dataset is composed of 2,100 aerial scene images
with 256 × 256 pixels equally divided into 21 land-use
classes. RS19 dataset contains 1,005 high-spatial resolution
images with 600 × 600 pixels divided into 19 classes, with
approximately 50 images per class.

Basu et al. in [5] introduced datasets SAT-4 and SAT-6 that

consisted of satellite images in conjunction with land-use
labels that were utilized by a neural network architecture
called DeepSAT for classification. The group explored var-
ious architectures including CNNs but found that feature ex-
traction followed by a deep belief network (DBN) [11] pro-
duced the best accuracy. [19] analyzed and compared dif-
ferent strategies for exploiting the power of existing CNNs
in classifying remote sensing imagery including full train-
ing, fine tuning and using CNNs as feature descriptors. The
same authors assessed the generalization of deep features of
ConvNets trained on everyday objects on aerial and remote
sensing image classification in [21]. Another recent Kaggle
competition - Dstl Satellite Imagery Feature Detection [1]
focused on the detection and localization of various objects
in satellite images. The high level conclusions from these
papers helped shape our model features and overall experi-
mentation thought process.

3. Dataset

Figure 2. Number of training images per class [2]

The Kaggle dataset that we use to train our CNN model
comes from satellite imagery of the Amazon Basin that was
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collected over a 1-year span starting in 2016. The train-
ing set and test set consist of 40,479 and 61,191 256 ×
256 images respectively. Each image is available both
in a 3-channel (RGB) JPEG format and in a 4-channel
(RGB+near-IR) TIFF format. There are 17 classes and
each image can belong to multiple classes. The labels can
broadly be broken into three groups: atmospheric condi-
tions, common land cover/land use phenomena, and rare
land cover/land use phenomena. The atmospheric condition
labels are: clear, cloudy, partly cloudy, and haze. The com-
mon labels are: primary, agriculture, cultivation, habitation,
water and roads. The rare labels are: slash-and-burn, se-
lective logging, blooming, bare ground, conventional min-
ing, artisinal mining, and blow-down. Figure 7 illustrates
the distribution of training images across different class la-
bels. It is evident that one of the more prominent challenges
is dealing with the class data imbalance–that is, some of
the classes have very few training images associated with
it. Upon closer inspection, we see that there is a struc-
ture in the labels and the inter-relationships among labels
can be exploited to design better classifiers and during post-
processing to weed out some misclassifications. Figure 3
shows the co-occurrence matrix for weather labels. We see
that the weather labels are mutually exclusive. Figure 4 and
5 show the co-occurrence matrices for the common labels
and rare labels respectively, where it is evident that com-
mon labels have heavy overlap while rare labels have very
minimal overlap.

Figure 3. Co-occurrence matrix for weather labels [2]

Figure 4. Co-occurrence matrix for common land cover/use labels
[2]

Figure 5. Co-occurrence matrix for rare land cover/use labels [2]

4. Methods
4.1. Architectures

Transfer Learning

To utilize the features from pretrained ImageNet models,
we studied the benchmark results of various architectures
in [6]. We experimented with several pretrained models like
InceptionV3 [23], ResNet50 [10] and Xception [7] available
in the Keras Applications library [3]. The output from the
last convolution layer from the pretrained model was passed
to a FC layer with 1024 neurons, a Batch Normalization
layer [13] and ReLU activation after global average pool-
ing and dropout layer (with 0.5 dropout probability). This
was followed by a dropout layer with 0.5 dropout probabil-
ity. The output layer consisted of 17 neurons with sigmoid
activation. The loss employed was a sum of binary cross-
entropy losses over the 17 classes. During the prediction
phase, the output scores for the 17 classes are thresholded.
The entire pre-trained model was finetuned while training
(details in the results section - code inspired by [3]).

Figure 6. Architecture for transfer learning using pre-trained Ima-
geNet models

Hierarchical Model

To explicitly account for the label dependence and class
imbalance, we also designed a model using three CNNs
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with the same basic architecture but different final layers.
The first network is a 4-class single-label classifier for the
weather labels with softmax loss (since the weather classes
are mutually exclusive). The second network is a multi-
label classifier with a sigmoid layer at the end. This pro-
vides labels for the six commonly-occurring land-use pat-
terns plus an additional label for the seven rarer classes
clubbed together. This helps in balancing the classes in
the training set. The third network is a multi-label classi-
fier for the seven rarer classes. This is trained only on the
images that contain at least one of the rarer labels. For pre-
diction, we use separate thresholds for the three networks
determined by their F2 score on the entire training set. We
use the output of the 3rd network only if the score for the
additional label in the 2nd network is above some threshold.

The architecture for the three networks consists of 10
(Conv-BN-ReLU) layers with 3 stride 2 Max Pooling layers
followed by two (FC-BN-ReLU) layers with 2048 and 1024
neurons. The Conv layers use 3x3 filters with stride 1. The
number of filters progressively increases as we go down the
network with the first Conv layer containing 32 filters and
the final one containing 128 filters. We experimented with
this model using different input images with 3-channels.

Figure 7. Hierarchical model with separate CNNs for subsets of
related classes; rare label CNN is used only if the common label
CNN predicts the existence of a rare label

4-channel Model

We also trained the hierarchical model above with 4-
channel 32x32 TIFF images. The entire architecture was
same except for the first convolution layer.

4.2. Improving Performance

We discuss some techniques used to improve the models
described above. The associated results are presented in the
subsequent section.

4.2.1 Data Augmentation

There is scope for variation in the exact location of houses,
roads, mines and other features in the image that would be
useful for the network to learn for this classification prob-
lem. Given the limited training data, we make use of data
augmentation such as introducing random rotations, hori-
zontal and vertical flips to make our models invariant to
the exact location and help in better generalization per-
formance. While fine-tuning entire ImageNet models like
ResNet, data augmentation is crucial for prevent overfitting.

4.2.2 Class-specific thresholds

For the transfer learning models, we use separate threshold
for each class instead of using a common threshold for all
classes. This improves the F2 score because it allows differ-
ent thresholds for classes based on their frequency and the
confidence of the model for the particular class. To find the
optimal threshold for each class, we loop over the classes,
adjusting the threshold for each class till we reach a station-
ary point. While this doesn’t guarantee a globally optimal
choice, it works well in practice.

4.2.3 Ensembling

The simple technique of ensembling multiple independent
models and averaging their results at test time proved to be
very effective in improving overall accuracy. Since differ-
ent models are more accurate for different classes, the ag-
gregate decision of independent models is less noisy than
the classification made by a single model. This underlying
idea of diversification makes our overall model less prone
to overfitting.

4.2.4 Test-time augmentation

For each test image, we generated multiple copies by ran-
domly flipping and transposing the images. Then we took a
majority vote of the predictions on all these images to obtain
our final predictions on the test set.

5. Experiments and Results
5.1. Evaluation metric

We rely on the F2 score as the primary evaluation metric.
The F2 score is a special case of the Fβ score which is de-
fined as

Fβ = (1 + β2)
pr

β2p+ r

where β = 2, p and r are precision and recall, defined as

p =
tp

tp+ fp
, r =

tp

tp+ fn
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where tp, fp and fn are the number of true positives,
false positives and flase negatives respectively. The mean
F2 score is calculated by averaging the F2 score for each
image in the test set.

5.2. Training

The training phase involves tuning a number of hyper-
parameters, including the optimization algorithm, learn-
ing rate, and regularization. We used a 90-10 training-
validation split for all models. For preprocessing, we sub-
tracted the training set mean from the images and rescaled
the images according to the input size of the model. We
used Adam [16] with batch size of 32-128 (depending on
GPU memory and model size) as the optimization algorithm
for all the models.

For the hierarchical model, we started the training with
the default learning rate of 0.001 and used a learning rate
decay schedule wherein the rate was reduced by half every
time the validation loss plateaued. We typically trained each
of the three networks for 25 epochs. For the third network
for classifying the rarer labels, we used the second network
as a pretrained model in order to avoid overfitting to the
2000 images for the rarer land use classes.

For the transfer learning architecture, we initially kept
the weights in the pretrained network frozen for 10 epochs.
After that, we reduced the learning rate by a factor of 10
and trained the entire network for 10 epochs. In some cases
we trained for 5 more epochs at a reduced learning rate.

5.3. Results

We used Keras [8] with Tensorflow backend for all our
experiments. The experiments were run on a Google Cloud
instance with 8 CPU-cores and a NVIDIA Tesla K80 GPU.
We made use of starter codes provided on Kaggle [2] for
loading images and submitting results.

5.3.1 Quantitative Evaluation

We present our performance on the test set for each of the
architectures in Table 1. For the transfer learning models,
we see that using more powerful models improves results.
Interestingly, increasing image size for Xception does not
improve performance. This might be due to performance
saturation for large image sizes.

The hierarchical images achieve very good performance
even for a relatively shallow network and small resolution
images. However, we were unable to replicate this success
for higher resolution images (200x200) or using pretrained
ImageNet models as the architecture for the three networks.
This was primarily due to overfitting, and several experi-
ments using extensive data augmentation and other tech-

niques like dropout failed to improve results. The 4-channel
TIFF images perform much worse than the 3-channel JPG
images. As discussed in several Kaggle discussions, this is
due to calibration issues and mislabeled images.

Ensembling 8 transfer learning models (some architec-
tures were trained more than once) and 2 hierarchical mod-
els achieves our current best F2 score of 0.93142 which is
placed at the 11th position (out of 436) on the Kaggle leader-
board (as of 6/12/17).

Model Input size F2 score
Transfer Learning

InceptionV3 200x200x3 0.92640
Xception 200x200x3 0.92648
Xception 224x224x3 0.92646
ResNet18 256x256x3 0.92653
ResNet50 224x224x3 0.92744

Hierarchical
- 32x32x3 0.91479
- 64x64x3 0.92323
- 96x96x3 0.92457
- 200x200x3 0.92387

4-channel 32x32x3 0.91083
InceptionV3 139x139x3 0.91495

Ensemble
- - 0.93142

Table 1. F2 score on test set for various models. Results for trans-
fer learning models used test-time augmentation. Ensemble was
obtained by taking majority vote of 10 best submissions.

Table 2 shows the precision, recall and accuracy for each
class, for predictions of ResNet50 model on the entire train-
ing set. The classes are arranged in the order of increasing
frequency. The accuracy is very high for the rarer labels
because most of the images do not have these labels. How-
ever this high accuracy does not translate to high precision
and recall measures for these classes. Both precision and
recall get better for classes with more examples. The rel-
atively low accuracies for road, agriculture and cultivation
classes are discussed in the qualitative evaluation section
below. For most classes, the recall is higher than the preci-
sion because the thresholds are chosen to maximize the F2

score which favors higher recall.

5.3.2 Qualitative Evaluation

We performed qualitative evaluation of our models to better
understand their behavior. We present some of the results
here for our best individual model, the ResNet50 transfer
learning model. Figure 8 displays some images from the
training set wherein the model got all the labels correctly.
While the first three images contain relatively common la-
bels, the last two contain one rare label. Thus, even with the
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Figure 8. Some correctly classified images.
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Figure 9. Some misclassified images

Class Precision Recall Accuracy
blow down 0.404 0.520 0.996

conventional mine 0.901 0.550 0.998
slash burn 0.279 0.540 0.990
blooming 0.349 0.286 0.989

artisinal mine 0.818 0.920 0.997
selective logging 0.757 0.229 0.992

bare ground 0.438 0.570 0.975
cloudy 0.682 0.976 0.975
haze 0.634 0.863 0.957

habitation 0.697 0.852 0.953
cultivation 0.463 0.825 0.875

partly cloudy 0.845 0.979 0.964
water 0.779 0.867 0.930
road 0.731 0.944 0.919

agriculture 0.752 0.959 0.891
clear 0.927 0.992 0.940

primary 0.968 0.997 0.967

Table 2. Class-wise precision, recall and accuracy on the training
set for the transfer learning ResNet50 model.

extremely small amount of data, the model is able to learn
the rare classes, a fact which is further exemplified by the
saliency maps discussed later.

Figure 9 displays some misclassified images with their
true and predicted labels. In the first and the last image,
our model predicts two weather labels due to confusing im-

age structure. Even though each image has a single weather
label, allowing multiple weather predictions reduces false
negatives and hence improves the F2 score. The model
misses some rare labels in the second and the fourth im-
age, which is expected because of the extremely small num-
ber of available images. Another common mistake, seen in
the fourth image, is the confusion between road and water
in the satellite images. Near-infrared band can help dis-
tinguishing the two classes; however, we didn’t pursue the
4-channel images due to reasons mentioned before. The
third image highlights an inconsistency in the training data
where the distinction between ‘agriculture’ and ‘cultivation’
classes seems to be arbitrary and a lot of images have both
labels. Thus, we see that a lot of misclassifications can be
attributed to the rarer labels and inconsistencies in the data.
This suggests that there might be a hard-to-breach limit due
to these factors.

To understand if the model was really looking for the
right features of the image while making predictions, we
looked at the saliency maps for some images and some se-
lected classes. These were obtained using the library keras-
vis [17]. Figure 10 shows four saliency maps. In the first
two images, the saliency map highlights the parts of the im-
ages close to the road and the water. The third image shows
that the model correctly identifies the location of a rare la-
bel, enhancing our confidence that the model is able to cap-
ture the important features for the rarer labels. In the fourth
figure corresponding to the same image but with the label
of ‘partly cloudy’, the saliency map covers the cloudy area
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Figure 10. Saliency maps for different classes

but seems to extend to the top portion of the image as well.

5.4. Discussions and Analysis

In this section we perform ablative studies and try to un-
derstand the results and the impact of various hyperparam-
eters.

5.4.1 Training

Figure 11 shows the loss profile for three instances of train-
ing the transfer learning models. Subfigure (a) shows the
loss profile for InceptionV3 network when only horizontal
and vertical flips are used for data augmentation. In the first
10 epochs, only the FC layers are trained and then the en-
tire network is finetuned at a lower learning rate. Due to
the small data size, we quickly see overfitting on the train-
ing set. Subfigure (b) shows the same model but with us-
age of random rotations, zooms and shifts. Here overfit-
ting doesn’t occur and the final validation loss is much bet-
ter. The test set F2 scores corresponding to (a) and (b) are
0.91481 and 0.92398, respectively (without test-time aug-
mentation). Several resources suggest that the CONV lay-
ers should be frozen in the first few epochs to prevent de-
struction of the pretrained weights. However as subfigure
(c) shows, the ResNet50 model trains fine even when the
entire model is trained directly (starting with a low learning
rate). Subfigure (c) also shows that reducing learning rate
can help when the loss profile starts plateauing.

Figure 12 shows the impact of learning rate (with opti-
mizer Adam) on the weather classifier, a component of the
hierarchical model. Recall that the model is a CONV-BN-
RELU network which is trained from scratch. Among the
fixed learning rates, 0.0005 gives the lowest validation loss
after 10 epochs. However, using a learning rate schedule,

with regular decrease in the learning rate, significantly out-
performs fixed learning rate models. We also trained our
weather classification model using SGD Nesterov momen-
tum update rule (default learning rate = 0.01, momentum =
0.9) and observed that it resulted in a higher final loss (train
loss: 0.2401, validation loss: 0.248) than the model that
relied on the Adam update rule. Ultimately, even further
hyperparamter tuning did not yield better results and there-
fore, we decided to use the Adam update rule for all of our
subsequent experiments.

5.4.2 Class-wise threshold selection

Figure 13 shows the best separate and common thresholds
for the ResNet50 model. Thresholds for more common
classes seem to be lower on average. This might be due to
the F2 metric which penalizes false negatives heavily. On
the training set, the F2 scores with common and separate
thresholds are 0.93441 and 0.93626 respectively. On the
test set, these figures are 0.92530 and 0.92744. Thus, se-
lecting separate thresholds is very important for improving
the predictions.

5.4.3 Test-time augmentation and Ensembling

As shown in Table 3, taking the majority of predictions of
transformed versions of test images improves the test F2

score significantly. We also tried averaging the scores first
and then applying threshold on the averaged score. How-
ever, that performed slightly worse, e.g., averaging scores
gives test F2 score of 0.92635 for the Xception model, as
compared to 0.92648 obtained by taking the majority.

As seen in Table 1, ensembling several independently
trained models provides around 0.004 improvement in the
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Figure 12. Loss vs. Learning Rate for Weather Network
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Figure 13. Class-wise and common thresholds for ResNet50
model

test F2 score. The best results was obtained by ensembling
10 models - 8 transfer learning and 2 hierarchical. Adding
more models didn’t improve the F2 score further.

Model F2 without F2 with test-set
test-set augmentation augmentation

ResNet18 0.92276 0.92653
InceptionV3 0.92398 0.92640
Xception 0.92471 0.92648
ResNet50 0.92682 0.92744

Table 3. Effect of test-time augmentation on test set F2 score

6. Conclusion and Future Work
We were able to design several well-performing mod-

els for classification of satellite imagery of the Amazon
Basin by fine-tuning CNNs pre-trained on ImageNet and
by exploiting the inherent structure of the problem. Many
tricks such as data augmentation and ensembling were em-
ployed to boost F2 score and their impact on performance
was gauged using thorough ablative studies. Our top-
performing model (an ensemble of 8 fine tuned single net-
works and 2 hierarchical models) achieves an F2 score of
0.93142 and places us at the 11th position out of 436 teams
in the Kaggle competition.

As future work, we believe the following ideas are worth
exploring: 1) finding ways to incorporate salient informa-
tion from the Near-IR channel, 2) trying out alternative im-
age preprocessing strategies, 3) designing separate mod-
els for each class which use suitable resolutions and chan-
nels, and 4) exploring other ensembling techniques (multi-
ple snapshots of the same network) to boost performance.
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