Audience Feedback Final Report

Shubham Chandak, Maggie Ford, Qingxi Meng, Mai Lan Nguyen, Manan Rai
Mentors: Sadjad Fouladi, Prof. Michael Rau, Prof. Tsachy Weissman

CS349T/EE192T Autumn 2020-21

Table of Contents

Abstract
Introduction
Background: Puffer platform

Latency Research and MSE
Sources of Latency
Initial Testing and Further Research

WebRTC Demos
Potential WebRTC libraries

Streaming with Janus

Emoji Feedback and Audio Feedback
Emoji Feedback
Animation
Canned audio effects
Audio Feedback

Chat

Conclusion and Future Work
Acknowledgements
References

Appendix: Janus Streaming
Building Janus
Running Janus
Streaming audio from file via RTP
Streaming video from file via RTP
Streaming video from YouTube via RTP

wvi B s

-

11
11
12
13
14

16

19

20

20

20
21
22
22
23
24

Abstract

Virtual theater performances often lack the real-time audience feedback available in live
performances, thus missing a crucial aspect of the theater experience both for the audience
and for the performers. In this project, we attempted to close this gap by developing feedback
mechanisms that adapt the typical audience feedback interaction in live theater to a virtual
setting. In particular, we implemented audience interaction through the use of emoji and
audio feedback, as well as a chat system. We also added audiovisual effects to the player to
simulate the theater experience for the audience.

An important prerequisite for real-time audience interaction is subsecond round-trip latency
from the performers to the audience, however this is lacking in most streaming platforms. We
explored the ability of various streaming mechanisms to achieve such a latency, initially
focusing on the use of Websocket based communication and Media Source Extensions (MSE).
However this system was unable to achieve the desired latency, and hence we finally
developed a prototype for a WebRTC based system which is a better fit for this application.
Code availability: The code for the emoji/audio feedback and the chat is available in the
audience-feedback branch of the GitHub repository:
https://github.com/stanford-stagecast/audience.

Introduction

The coronavirus pandemic caused significant disruptions in the Theater and Performing Arts
industry. With the closures of in-person theater spaces, many working artists found
themselves having to shift onto the digital space to continue creating their work - e.g., on
Zoom, Twitch, YouTube Live, etc. Nevertheless, none of the currently available technologies
were specifically designed to be utilized by theater-makers/-goers and their use for artistic
purposes often proves to be sub-optimal and inconvenient.

Through this project we intend to envision how theatrical ‘liveness’ and interaction translates
(or rather becomes redefined) in an online space. We aim to design and develop a system to
host a live theatrical production with low-latency audio and video streaming to actors and
audience members.

In our design we mainly focus on achieving low-latency actor-audience and
audience-audience communication and creating an interactive audience feedback interface.

On the low latency end, our group aimed to stream the video from the source to the audience
with sub-second latency. To do so, we first tried to adapt from the streaming platform Puffer
(Yan et al., 2010) to achieve low latency. However, we encountered some technical difficulties

with MSE (W3C, 2016). Therefore, we decided to use WebRTC for streaming instead and
created a prototype system.

For the audience feedback part, our group tried to collect emoji-based feedback, text feedback
and audio feedback from the audience. We designed a nice user interface for the audience to
send emojis or participate in text chat. The audio of the audience is also collected for the
director to see the feedback.

Background: Puffer platform

Here we briefly describe the Puffer video streaming platform' (Yan et al. 2020) which was
developed by Prof. Winstein’s research group to explore the use of machine learning to
improve video streaming algorithms, especially to reduce glitches and stalls due to unreliable
network conditions. The Puffer project transmits free over-the-air television channels and
collects network data from users to optimize the streaming algorithm. In this project, we used
part of the Puffer platform® to deliver the video to the audience, and we expanded the platform
to support various forms of audience feedback and interaction.

The Puffer codebase consists of the following components:

- Media server (C++): This is responsible for detecting new video segments (added to a
directory) and sending these to the users through WebSocket connections. The media
server is responsible for adapting the video bit rate, buffer size and other parameters
according to the network conditions to achieve the desired performance. The media
server uses regular feedback from the users to make these decisions.

- Web server (Django): This is responsible for managing the user accounts and serving
the content to the user. Puffer uses a Django backend for receiving and storing the
audience feedback, and for facilitating the chat interaction.

- User interface (HTML/JavaScript): This is the frontend part that connects to the media
server using WebSockets and displays the audio/video content on the browser using
MSE (Media Source Extensions). It also sends regular feedback to the media server
regarding the current video timestamp allowing the server to adapt the video
parameters. Finally, the frontend interacts with Django through http requests which
we use for sending/receiving audience feedback.

' Website: https:/puffer.stanford.edu/
2 Made available by Sadjad Fouladi at https://github.com/stanford-stagecast/audience

https://puffer.stanford.edu/
https://github.com/stanford-stagecast/audience

Latency Research and MSE

One of the major issues we had to face in designing a working audience feedback system was
reducing the latency in the video and audio stream’. We recognized that the so-called
“liveness” of a performance in the digital space would be best perceived by the audience if they
could communicate their reactions/feedback (to the actors and/or other audience members)
almost immediately - similar to the experience in a real, physical live theater. Hence, our goal
was to achieve sub-second latency video and audio streaming in the already existing
streaming system provided by Puffer.

Sources of Latency

As illustrated below in figure 1, our video is first transmitted from the video source (e.g.
camera) to Puffer (the video streaming system), which in turn serves the video to the User (e.g.
audience member) over the network.

1st source of latency 2nd source of latency

Video Source :>: Puffer :>: User ‘

Figure 1: The flowchart of the transmission of video from source to user

In inspecting our streaming system, we identified two key sources of latency: video chunk size
(on the path from video source to Puffer) and video buffer size (on the path from Puffer to

user).

The video source, VS, provides the recorded video to Puffer in chunks of predetermined size,
x. Hence, it will take at least x amount of time for a video to reach Puffer from the video
source, which means we will have at least an x-second delay on the path from video source to
puffer (e.g. if the video source is a camera, it has to record 2s of video first and then send that
to Puffer for streaming, and so there would be at least a 2s delay).

On the path from Puffer to user, on the other hand Puffer has to read the video chunks and
only then can it stream them to the user. In that part of the system, the client builds and keeps

https://aws.amazon.com/media/tech/video-latency-in-live-streaming/?fbclid=IwAR03bg8fNtp1w7zE2AiY2CcKfwCkBNqr9zVxLyDKr4xkRaKtDGl8wMEiSJw
https://aws.amazon.com/media/tech/video-latency-in-live-streaming/?fbclid=IwAR03bg8fNtp1w7zE2AiY2CcKfwCkBNqr9zVxLyDKr4xkRaKtDGl8wMEiSJw

a buffer of size y. Hence from initialization, we have to wait for puffer to read the y seconds
worth of video first before we can play the video. Hence, overall the system may have latency /

>y,

In our original Puffer system, the video chunks we served were 2.0002 seconds long whereas
our buffer was of size 15 seconds. Hence, the original system had 15-second latency. Whereas
our goal was to achieve latency / < 0.5 seconds.

Initial Testing and Further Research

During initial testing, we found that the buffer size had to be: y > x, where x is the size of the
video chunk and y is the buffer size. Hence, we were able to easily bring our latency down to
2.0 seconds by simply decreasing the buffer size down to 2.0 in the code for Puffer (as
illustrated below in figure 2).

static constexpr double MAX BUFFER S = 15.8; J/* seconds */

Figure 2: The line of code that defines the maximum buffer size (line 129 in ws_client.hh)

To decrease the latency further, however, we had to decrease the served video chunk sizes as
well. We were able to serve our video in 0.5 second chunks, which allowed us to decrease our
buffer size to 0.5 and therefore achieve a 0.5 second latency.

On this step, however, each of our 0.5 video chunks started with a keyframe. Hence, keyframes
appeared every o.5 seconds in our video stream which we found redundant. To optimize
further, we attempted to generate o.5 chunks from our video stream, where only every other
chunk contained a keyframe. We did this by attempting to parse the binary .m4s video files and
using ffmpeg. This however seemed to be infeasible as we could not access the information
about the location of the keyframe in the file from the metadata. Additionally, we were not able
to determine if MSE (Media Source Extension - API for browser video streaming), which is
used in the Puffer code, is able to process video chunks that don’t start with a keyframe.

00000170 | @@ o0 28 48 |ed 64 61 74| 00 00 02 ad 06 05 £f £f B. (shdazt] ..z
00000180 | 2% dc 45 e5 bd =6 d9 43 k7 96 2c d8 20 d9 23 ee 1 i L ¥ ,2 &
00000150 | ef 78 32 36 34 20 2d 20 63 6f 72 €5 20 31 35 35 x264 - core 155
00000120 | 20 72 32 35 31 37 20 30 61 38 34 €4 39 38 20 2d r2%17 0a84d5s -
000001b0 | 20 48 2e 32 36 34 2f 4d 50 45 47 2d 34 20 41 56 H.264/MPEG-4 AV
0000010 | 43 20 63 6f 64 €5 63 20 2d 20 43 €f 70 79 6c €5 ¢ codec - Copyle
00000140 | 66 74 20 32 30 30 33 2d 32 30 31 38 20 2d 20 &8 ft 2003-2018 - h
0000010 | 74 74 70 3a 2£ 2f 77 77 77 2= 76 €9 64 65 Gf 6c ttp://www.videol
000001£0 | 61 6e 2= 6f 72 €7 2f 78 32 36 34 2e 68 74 6d 6c an.org/x264.html
00000200 | 20 2d 20 6f 70 74 69 6f 6e 73 3a 20 63 61 62 61 - options: caba
00000210 | 63 3d 31 20 72 €5 66 3d 31 20 64 65 62 6c G6f 63 c=1 ref=1 debloc
00000220 | 6b 3d 31 3a 30 3a 30 20 61 6s 61 6c 79 73 65 3d k=1:0:0 analyses=
00000230 | 30 78 33 3a 30 78 31 31 33 20 6d €5 3d 68 &5 78 0x3:0x113 me=hex
00000240 | 20 73 75 €2 6d €5 3d 32 20 70 73 79 3d 31 20 70 subme=2 psy=1 p
00000250 | 73 79 5£ 72 64 3d 31 2 30 30 3a 30 2e 30 30 20 sy _rd=1.00:0.00
00000260 | 6d €9 78 65 €4 5f£ 72 65 66 3d 30 20 6d 65 S5f 72 mixed ref=0 me =z
00000270 | 61 6e 67 €5 3d 31 36 20 63 68 72 6f 6d 61 S5f 6d ange=16 chroma_m
00000280 | 65 3d 31 20 74 72 65 6c 6c 69 73 3d 30 20 38 78 e=1 trellis=0 8x
00000250 | 38 64 63 74 3d 31 20 63 71 6d 3d 30 20 64 65 61 fdect=1 cqgm=0 dea
00000220 | 64 7a 6f 6= 65 3d 32 31 2c 31 31 20 66 61 73 74 dzone=21,11 fast
000002b0 | 5£ 70 73 €b 65 70 3d 31 20 €3 68 72 6f 6d 61 S5f _pskip=1 chroma
000002c0 | 71 70 S5f 6f 66 €6 73 65 74 3d 30 20 74 &8 72 €5 gp_offset=0 thre
00000240 | 61 64 73 3d 31 20 6c 6f 6f 6b 61 €8 65 61 64 S5f ads=1 lookahead_
00000220 | 74 €8 72 65 €1 €4 73 3d 31 20 73 6c 69 63 65 64 threads=1 sliced
000002£0 | 5£ 74 68 72 65 €1 64 73 3d 30 20 6e 72 3d 30 20 _thread 0 nr=0
00000300 | 64 €5 63 69 6d €1 74 65 3d 31 20 €9 6e 74 &5 72 decimate=1 inter
00000310 | 6ec 61 63 65 64 3d 30 20 62 6c 75 72 61 79 S5f 63 laced=0 bluray_c
00000320 | 6£ €6d 70 61 74 3d 30 20 63 6f 6e 73 74 72 61 €9 cmpat=0 constrai
00000330 | 6e €5 64 5 69 €e 74 72 61 3d 30 20 62 66 72 61 ned _intra=0 bfra
00000340 | 6d 65 73 3d 33 20 62 5£ 70 79 72 €1 6€d €9 64 3d mes=3 b_pyramid=
00000350 | 32 20 62 5f 61 €4 61 70 74 3d 31 20 62 5f 62 &9 2 b_adapt=1 b_bsi
00000360 | 61 73 3d 30 20 64 69 72 65 €3 74 3d 31 20 77 €5 as=0 direct=1 we
00000370 | 69 €7 68 74 62 3d 31 20 6&f 70 65 6e 5f 67 6f 70 ightb=1 open_gop
00000380 | 3d 30 20 77 65 €5 67 68 74 70 3d 31 20 6b 65 79 0 weightp=1 key
00000350 | 69 6e 74 3d 32 35 30 20 6Gb 65 79 €5 6e 74 Sf 6d int=250 keyint_m
00000320 | 69 6= 3d 32 34 20 73 63 65 6= 65 €3 75 74 3d 34 in=24 scenecut=4

Figure 3: Part of a .m4s.file in binary format

After more research about streaming with low latency, we finally decided to switch from MSE
to WebRTC. The reason is that MSE is generally not used for ultra low latency because it
prioritizes the smoothness of streaming videos rather than extremely low latency. The original
purpose of MSE is to replace Flash for playing videos on the browser. However, one downside
is that we need to move our current work to WebRTC which is not easily scalable. Another
downside is that WebRTC is not traditionally used for video streaming. However, we found a
workaround to this, and the details about it are shown in the WebRTC Demos section below.

WebRTC Demos

To explore the possibility of using WebRTC as the streaming platform, we looked into some of

the open source implementations and demos, and built a prototype system showcasing the

capabilities of this framework. The main prototype was built using Janus (Amirante et al. 2014),

but we first describe certain other libraries we looked into. Note that our aim was to develop a

system with one end running native code (preferably C++) which can transmit video on the
disk or from a live stream to the other end running on the browser.

Potential WebRTC libraries

WebRTC native code from Google*’: This is supposed to be the standard WebRTC
library, and we found a couple of tutorials®” on using this for native-to-browser
streaming applications. However we found that this was not very well-documented and
the tutorials used an older version of WebRTC making it complicated to get it working.
In addition, the codebase is quite bulky due to the use of Chromium build toolchain
and many dependencies. Overall, we felt that this was not suitable for building the
initial prototype system.

Pion WebRTC?: This is a pure Go implementation of WebRTC. We were able to test the
demo play-from-disk? which can stream a video from a native WebRTC client to a
browser. The code suggests that the data is transmitted frame-by-frame by taking the
input file in the IVF format' which is simply a transport format for VP8 encoded video.
They also have several other demos, including a broadcast demo" where the video is
broadcasted to many peers but the video publisher needs to upload the video only
once. This can be useful for applications where the publisher is bandwidth constrained,
but we have a high throughput transmission server available. One possible concern
here is the use of Go rather than C++,

Other WebRTC implementations™: This webpage discusses the “top five” open source
WebRTC media server projects, and we used the top one (Janus) for our main prototype
as discussed next.

https://webrtc.googlesource.com/src/+/refs/heads/master/docs/native-code/index.md
https://webrtc.googlesource.com/src/+/refs/heads/master/docs/native-code/development/index.md
https://sourcey.com/articles/webrtc-native-to-browser-video-streaming-example
https://github.com/brkho/client-server-webrtc-example
https://github.com/pion/webrtc/
https://github.com/pion/webrtc/tree/master/examples/play-from-disk
https://wiki.multimedia.cx/index.php?title=IVF
https://github.com/pion/webrtc/tree/master/examples/broadcast
https://ourcodeworld.com/articles/read/1212/top-5-best-open-source-webrtc-media-server-projects

Streaming with Janus

In this section we describe the WebRTC streaming prototype built using Janus (Amirante et al.
2014). We go through a high-level overview here, and the detailed commands and other details
are available in the appendix. The overall system is shown in Figure 4 below.

Media | rpmpec ——— Janus

source RTP

- Audio file Supported codecs:
- Video file Opus WebRTC
- Youtube-d| VP8

live stream

written to

pipe

Figure 4: Janus streaming prototype architecture

As shown in the figure, the prototype is capable of streaming an input from an audio file, a
video file or from youtube. In all cases, the input is first converted to an RTP (Real-time
Transport Protocol) using ffmpeg (other tools such as gstreamer can be used for this task). We
use RTP because Janus provides a RTP receiver that can read in the RTP stream as long as the
audio is encoded using Opus codec and the video is encoded using VP8 codec (note that
WebRTC and the browsers usually support certain other formats as well”). This stream is then
sent over WebRTC and can be seen on the browser by serving the Janus demo website on a
simple HTTP/PHP static server. When relevant, we used the -re flag for ffmpeg, which ensures
that the input is read at frame rate, so that the communication to Janus properly simulates a
real-time application. To ensure that the streaming works well when the input is not from a
file but rather a live stream, we used the youtube-dl downloader piped into ffmpeg
(youtube-dI* is a downloader for youtube videos). This nicely simulates a typical use-case for
us where we get the video frames from an external source and need to rapidly transmit this to
the audience through WebRTC. We show a few screenshots for the output below.

https://developer.mozilla.org/en-US/docs/Web/Media/Formats/WebRTC_codecs#Supported_audio_codecs
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/WebRTC_codecs#Supported_audio_codecs
https://youtube-dl.org/

Plugin Demo: Streaming s

Streams & Stream (XD 300 kbits/sec
Opus/VP8 live stream coming e (liv
O Metadata

You can use this metadata section to put any info you want!

Janus WebRTC Server © Meetecho 2014-2020

Figure 5: Example of Janus streaming a normal YouTube video

Plugin Demo: Streaming s

Streams Stream [256x144 | 174 kbitsisec

O Metadata

You can use this metadata section to put any info you want!

Janus WebRTC Server © Meetecho 2014-2020

Figure 6: Example of Janus streaming a live YouTube video

O Metadata

|

SORY oo [asostaa] 103 oo

8:02:44 .30 .

SECONDS

DAYS HOURS MINUTES

8:02:44:25

Dars sltes SECONDS

Top chat »

Janus WebRTC Server ® Meetecho 2014-2020

Figure 7: Comparing Janus streaming (right) with original YouTube live stream (left) for a
countdown video. Notice that Janus is 5 seconds ahead of the YouTube stream as discussed
further in the text.

As shown in Figure 5, we try to use Janus to stream a normal YouTube video®, and the bit rate
is around 300 kbit/sec. As shown in Figure 6, we try to use Janus to stream a live YouTube
video®, and the bit rate is around 174 kbit/sec. Notice that the bitrate of streaming a live
YouTube video is higher than that of streaming a normal YouTube video. As shown in Figure 7,
we also try to compare Janus streaming with YouTube live streaming for a countdown video".
Notice that our streaming is 5 seconds ahead of the YouTube streaming. The reason is that
YouTube keeps a buffer to ensure that the streaming is less susceptible to the poor internet
connection.

Finally, we discuss some of the limitations of the current prototype. We note that these are
most likely related to some technical issues and not fundamental limitations of Janus itself.
This is because the demos on the Janus website® do not suffer from these limitations. One
limitation is that the prototype only works on Chrome, for reasons currently unknown.
Another limitation is the performance, it’s very good for audio, but a bit laggy for video, with
the video dropping out sometimes. We could not go into the depths of these issues due to time
constraints at the end of the quarter, we hope that the current prototype and research can be
useful as a starting point for the actual system to be used in the Winter quarter performance.

|

o]

https://www.youtube.com/watch?v=dQw4w9WgXcQ
https://www.youtube.com/watch?v=DDU-rZs-Ic4
https://www.youtube.com/watch?v=NKfPhe245kE
https://janus.conf.meetecho.com/

Emoji Feedback and Audio Feedback

This section describes the implementation of audience feedback through emojis and audio, as
well as updates to the interface to enrich the audience experience. Since the work on reducing
the latency is still ongoing, the current feedback system is not as real-time as aimed for in the
ultimate system, and the feedback is currently supposed to be visualized and interpreted after
the performance. We developed the mechanisms to collect data and test the ideas, noting that
much of the front-end interface can be reused when the low latency implementation is
available.

Emoji Feedback

First we look at the implementation of emoji-based feedback shown in the screenshot in
Figure 8 below. The list of emoji buttons is shown on the right bottom corner of the video
screen, and the corresponding emoji button becomes larger and lights up when the cursor is
placed over it. The list of emoji buttons is easy to edit by changing the html accordingly. The
buttons were made responsive, using basic CSS media-query-based responsiveness for
popular screen-size breakpoints (414px, 768px, 1024px). Note that the design is laptop-first
(instead of mobile-first).

Figure 8: Screenshot of emoji feedback buttons

To communicate the button press event to the server, we implemented two mechanisms in
JavaScript/Django. In both cases, the username, the video timestamp when the button was
pressed and the button emoji text are transmitted.

1. WebSocket-based feedback: Here the feedback is sent to the media server through the
WebSocket connection used for receiving the multimedia and for relaying
latency-related feedback. We implemented a special message type on the media server
in C++ to interpret such messages, but currently the messages are just printed on the
stdout and not actually stored or shown to the director. We believe that the WebSocket
based feedback can have certain advantages later since it can naturally support
streaming data (such as audio feedback), but currently we mostly rely on the Django
feedback described below.

2. Django-based feedback: As described previously, the web server is built using Django
which provides an easy-to-use API for collecting and storing the feedback. We store
the post-hoc timestamped feedback in a local SQLite database through the Django
backend. We expose an endpoint called feedback that takes the timestamp and feedback
text, and auto-populates the logged-in user to the request, and creates a new instance
of the feedback model. The received feedback can be seen using the Django admin
interface as shown in Figure 9. Future work includes compilation of the feedback and
presentation in a suitable format for the director and performers.

Django administration Django administration

Select audience feedback to change Change audience feedback

Invitation tokens + Add Invitation tokens + Add

n [< |[Ga] 0 of 100 selectec User: schandak v

0O 00
@
5
&
3

359.676349

AudienceFeedback object (507) Users. Add

AudienceFeedback object (506) eedbac @

(]

AudienceFeedback object (505)

Audience feedbacks Add

o o

AudienceFeedback object (504)

Audio feedback: Add
AudienceFeedback object (503) udio feedbacks

User profiles Add

AudienceFeedback object (502)

O AudienceFeedback object (501)

O AudienceFeedback object (500)

O AudienceFeedback object (499)

Figure 9: Django admin interface showing the emoji feedback

Animation

The interface shows animation effects on the video player when the emoji buttons are pressed
to enhance the user experience. We use two animation methods, both based on CodePen
community contributions. Our aim was to entertain the user without obstructing the actual
content, and therefore we display the animations only on part of the player, and use low
opacity for them. The first” effect is to display emojis (corresponding to the button pressed)

19 hitps://codepen.io/vivinantony/pen/gbENBB

https://codepen.io/vivinantony/pen/gbENBB

floating towards the top of the screen. The position of the emojis is chosen at random and CSS
based animation is used. The second* effect is a firework animation that is shown only for
emojis with a “happy” sentiment, as defined by an HTML data attribute. To avoid overuse, this
is shown only with probability 4 when a “happy” emoji button is pressed. This uses a
JavaScript canvas API for the animation. To make sure that the animations play only for a small
duration after the button press, we store the last time the animation was displayed and stop
the animation if no new button press occurred in the last 4 seconds. The animation effects are
illustrated in Figure 10.

R T

A, e

Figure 10: Emoji animation (left) and firework animation (right)

Canned audio effects

An important component of any live performance is the cheering, clapping, laughing, booing
and other sounds generated by the audience. We plan to ultimately implement this in
real-time based on the cumulative feedback from the audience members. For example, a
laughter soundtrack can be played when more than some threshold number of audience
members press the laughing emoji. Having a threshold ensures that individual audience
members cannot disrupt the performance. The laughter sound can be played both at the
performers’ end and on the other audience machines, superimposed with the actual audio
from the performance. However, since the low-latency system is still in development, we
could not implement this in full.

Instead we developed a system where the emoji audio is played independently for each
audience member according to the emoji button pressed by them. We obtained canned sound
effects (as typically heard on TV shows) from an online database* and assigned the effects to
specific emoji buttons using the HTML data attribute. For playing the audio we use the Howler

» hitps://codepen io/judag/pen/XmXMOL.
21 hitp://www.realmofdarkness.net/sb/crowd/

https://codepen.io/judag/pen/XmXMOL
http://www.realmofdarkness.net/sb/crowd/

JS library®. The effects are of length ~5s and are played at a lower volume than the actual audio
to avoid disruption. We currently play the laugh, clap, boo and angry sound effects for the
corresponding emojis. The relevant sound clips can be found on GitHub?.

Audio Feedback

In addition to the emoji feedback, we implemented a preliminary version of audio feedback.
The eventual goal here is to have live (possibly filtered and moderated) audio from the
audience to the performers and other audience members, to simulate the theater experience.
Another possibility would be to capture live audio, use algorithms to classify the audio and
then play a corresponding canned soundtrack. This has the advantage of not playing any noise
or sensitive conversations, while still offering the audience members the convenience of not
having to repeatedly press the emoji buttons.

The current system is an initial prototype that collects and stores audio events, which can be
listened to later and used for training purposes or to understand the viability of real-time
audio feedback. We use the hark JS library* that allows audio event detection and hence we
don’t need to record and store the audio for the entire performance. This is then recorded and
uploaded to the Django web server. The various aspects of the system are detailed below:

- Privacy considerations: To address privacy concerns, the audio feedback is optional
and the rest of the platform works without hitches even if the user blocks the
microphone in the browser. In addition, we show an indicator whenever the audio is
being recorded and offer the option to mute/unmute the recording system during the
performance (muted by default). See Figure 11 for an illustration.

Figure 11: Audio recording indicator, mute and unmute buttons in the player.

- Audio detection: The hark library performs polling at a user-defined interval and
raises JS events when the speaking starts or stops. It uses a decibel threshold which can
be changed. To capture short claps we need a small polling interval (set to 10ms). But a

https://github.com/goldfire/howler.js/
https://github.com/stanford-stagecast/audience/tree/audience-feedback/src/portal/puffer/static/dist/audio
https://github.com/otalk/hark

small polling interval leads to highly fragmented audio capture (e.g., two consecutive
claps in different audio files). To fix the issue above, we added logic that makes sure we
stop recording only when there has been continuous silence for some time (currently
set to 18).

Audio recording: For recording the audio, we use the MediaStream Recording API*,
where a separate recording was performed for each detected event. The recording was
converted to WebM format using the Opus codec and the file size was around 7 KB per
second of recording. We found that in some cases the detection was on for very long
durations (see point on limitations below), and this led to very large files being sent to
the server. So we limit a single recording to 60s, where we send chunks of size 60s to
server (with appropriate suffix for identification and ordering). At the server these can
simply be concatenated to recover the original long recording. This provides resilience
in case the user closes the browser or the recording gets too long.

Audio recording upload: We use a Django model and endpoint, similar to that used for
emoji feedback. The Django model contains the file, the user name and the video
timestamp (to enable association of audio with the section of the performance). The file
is saved to media/{username}/audio_{timestamp} {suffix}.webm where the suffix is for
cases where the file needs to be split into 60s chunks (see previous point). The
directory structure at the server and the Django admin interface for the audio feedback

Django administration
o - e . . g
v B It o s
- media Change audio feedback

Invitation tokens Add
i F
v admin

are shown in Figure 12 below.

User: schandak v
i

w schandak

Groups + Add Audio file: Currently: schandak/audio_3.083111_0.webm

[_.,j audic_0.110099_0.webm Users ndd ters: EHERETRRY o e chosen
[& audio_5.267423_0.webm

[& audio_19.235936_0.webm

[l audio_122.448529 Owebm 70 "

Figure 12: Audio feedback directory structure and Django admin interface.

Limitations: The current system has certain limitations related to audio detection. One
is that the detection is somewhat over-sensitive and tends to capture background
noises such as a closing door. This can be probably be fixed using careful tuning of the
detection threshold, however it might be hard to select a uniform threshold that works

https://developer.mozilla.org/en-US/docs/Web/API/MediaStream_Recording_API/Using_the_MediaStream_Recording_API
https://developer.mozilla.org/en-US/docs/Web/API/MediaStream_Recording_API/Using_the_MediaStream_Recording_API

across different users with different mic quality. One solution could be to adaptively
select the threshold for each user.

Another major issue is related to echo cancellation. For Chrome and most other
browsers, echo cancellation doesn’t work for non-WebRTC audio input®. This means
that if the user listens to the performance on a speaker, that audio is detected and
recorded. One solution for this is to build a custom echo cancellation system, another
is to separate the original audio at the server. Currently we simply display a warning
recommending that the users keep their audio muted unless they wish to provide
feedback or use headphones for listening.

Chat

In order to allow for a more interactive experience, we implement a chat functionality where
viewers can interact with one another in real time. The plan for the final version is to have
chat messages relayed to the actors/directors in real time as well, allowing for a fluid
performance where any feedback floated through the chat can be incorporated as deemed
necessary by the performers. For the current version, the chat messages are stored for
post-hoc analysis, so that the viewers’ comments can reach the performers with little friction
in order to inform future productions.

Chat

S

admin &

admin 5

admli graal

admin this is s el
Admin &
admin &
aomin
admin &
admin ¥

admiin

Figure 13: Chat box as it appears alongside the video.

- Design: The chat box appears on the main watch page alongside the video player. The
trade-off is that it reduces the size of the video player; but more visibility for the chat
means that people may be more likely to use it, which would allow us to gather more

26 https://qithub.com/webrtc/samples/issues/1243#issue comment-626810415

https://github.com/webrtc/samples/issues/1243#issuecomment-626810415

feedback. Note that the design of the component, including the color palette, is similar
to that of the rest of the page. All messages sent via the chat are time-stamped based
on the current video time, and displayed in latest-at-the-bottom format. The chat has
an auto-scroll feature that triggers when the viewer has not manually scrolled too far
towards the top of the component, which allows for a smoother experience, and adds
an additional layer of interactivity to the page. Note that timestamps are not displayed
in the chat: we only show the sender’s username and the message itself.

Integration with Emoji-based Feedback: Without the chat feature, the emoji-based
feedback only affected an individual user’s experience in that they would see the
emoji-associated animation overlayed on the video player. With the chat, however, we
make the emoji feedback a more shared experience. All emoji feedback is stored on the
backend in the same format as the chat messages, and displayed in the chat box as
such.

Server and Pipeline: The Django puffer app serves the views for the player. We use a
feedback model to store the associated user, the timestamp (as a float), and the feedback
text. We expose an endpoint called feedback that takes the timestamp and feedback
text, and auto-populates the logged-in user to the request, and creates a new instance
of the feedback model.

In order to create the chat replay when a user loads the page, we use a new
endpoint to collect all chat/feedback messages between a from and a to time (as before,
these timestamps correspond to in-video times). This endpoint returns a JSON-list of
usernames, timestamps, and feedback texts. This list is then sorted by the frontend in
increasing order of timestamps.

The frontend fetches new messages from the server every 500 milliseconds to
ensure that different clients are closely synced to new messages sent by other clients.
Note that the sooms delay is also small enough to ensure that a new feedback (both
emoji-based and chat) sent by a user seems to have been immediately added to the
bottom of the chat for the user. The frontend also tracks the timestamp for the last
server call, using this as the “from” timestamp for the next message fetch.

Full-screen Chat: We realize that many viewers would prefer to experience the actual
performance in full screen, which would traditionally hide the chat in other streaming
services. In order to retain some semblance of an interactive theater experience even
when the video player is in full-screen mode, we allow the option of viewing the chat
replay as an overlay on the full-screen video player as shown in Figure 14.

admin W
admin W
admin &
admin &

admin W
admin %
admin &
admin @

That's How They
Got There

admin &
admin &

admin W
admin @
admin S

admin %
admin W
admin &

Figure 14: Chat box in full-screen mode.

We also show a floating toggle-button that can be used to hide the full-screen chat as
needed. This chat uses the same server-fetching functionality as the screen-side chat,
and both chat components are updated simultaneously. Note, however, that the
full-screen chat only allows reading a replay of messages, and not sending new ones,
primarily because of design constraints. Since the full-screen chat is overlaid on a
semi-transparent box, we found it difficult to design a message entry that works
full-screen. Given more data on how much viewers use both the normal and
full-screen chat features, we can develop an entry design that also works full-screen.

Moderation: A mechanism to filter and moderate chat messages is very important for a
feature that allows interaction between viewers, and between viewers and performers.
For the current example, we allow blocking users from the chat through the Django
admin portal. This is done by creating a UserProfile model linked with user accounts
that stores a boolean flag. If this flag is set, they can still see messages that other users
send to the chat, but cannot send new messages. When a user is blocked from the chat,
they see a different component in place of the chat entry as shown in Figure 15.

Sorry, chat is not currently available

Figure 15: Users who have been blocked from the
chat see this message in place of the chat entry.

- Video Loop: We considered a possibility of playing the performance on loop over an
extended period in order to gather more data about user experiences from a larger
cohort of users. In order to support this, the chat messages are only tagged with the
video timestamp, and fetched from the server as is. As a result, when the video is
played on loop, messages from different re-runs are not distinguished from each other.
To a user, this would give the sense of more user interaction, which is likely to further
encourage them to engage with the chat functionality.

Conclusion and Future Work

The interaction and the exchange of energy between the actor and the spectator is what
distinguishes a theatrical experience from other types of media consumption. During a live
performance, audience feedback is crucial not only for the performers and the creative team
but also for the audience members themselves. It is through this feedback that a sharing of
space and community is established.

Through this project we intended to envision how theatrical ‘liveness’ and interaction
translates (or rather becomes redefined) in an online space. We hope that the current progress
on emoji and audio-based feedback, audiovisual effects to enhance user experience, chat
functionality, and the exploration of low-latency video transmission using Puffer and WebRTC
can act as an inspiration for such a system and provide useful building blocks for achieving
this goal. In the future work, we suggest a few ways in which the audience members’ presence
can become even more prominent - i.e. through audience auditory and visual feedback - thus
facilitating a fuller, more fulfilling, and more “live” theatrical experience.

While the chat function and emoji feedback seemed to be fundamental in creating an
interactive online space, many other video streaming platforms already utilize this form of
interaction. To enhance the audience experience, we suggest enabling audience members to
enter “breakout/chat rooms” with their friends, where they can view the performances
together and chat/talk to each other via audio conferencing throughout the performance.
Additionally, we encourage creating a digital theater lobby for the audience to interact with
each other, perhaps through digital puppets, at beginning, end and intermissions of
performance.

We also recognize some technical challenges that require development. Those include: low
latency audience feedback which is to be communicated back to the audience, actors and staff,
adjustments to the levels of this feedback - i.e. intensity of sound (loudness), visual effects
(ensuring minimal disruption). We also suggest a utilization of statistics and compilation of
feedback data from the audience. This data can be utilized to generate reactions of the

appropriate intensity back to the audience or can be reported back as a statistic to the
director/crew members of the project.

Finally, we encourage exploring ways in which our platform can ensure user safety. We
envision our space to be inclusive, non-discriminatory and respectful. It should be our priority
to protect our users against any type of harmful and disruptive behavior.

Acknowledgements

We would like to thank the mentors and instructors Sadjad Fouladi, Prof. Michael Rau, Prof.
Tsachy Weissman and Prof. Keith Winstein for their guidance and helpful suggestions.

References

Amirante, A., Castaldi, T., Miniero, L., & Romano, S. P. (2014, October). Janus: a general
purpose WebRTC gateway. In Proceedings of the Conference on Principles, Systems

and Applications of IP ‘Telecommunications (pp. 1-8).

Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi Zhang,
Philip Levis, & Keith Winstein (2020). Learning in situ: a randomized
experiment in video streaming. In r9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20) (pp. 495-511). USENIX Association.

W3C (2016) Media Source Extensions. https://www.w3.org/TR/media-source/.

Appendix: Janus Streaming

Here we describe the detailed commands used for building and running Janus for our WebRTC
prototype, please see the relevant main section in the report for context. The code for Janus is
available on GitHub at https://github.com/meetecho/janus-gateway. We tested Janus both on

Linux and on Mac. For Linux we used the popeye2.stanford.edu server which is the address
referred to in some of the commands below. Also note that the prototype currently only works

https://www.w3.org/TR/media-source/
https://github.com/meetecho/janus-gateway

on Chrome. But similar demos available on the Janus website* work on other browsers,
suggesting that this is only a technical issue and not a fundamental limitation of Janus. Finally,
note that the Janus streaming demos also have the option to take input directly from a file,
however we do not use this since it is limited to only the a-law and mu-law audio formats.
Instead we use the demo that uses input from RTP that can support a larger range of inputs.

Building Janus

After installing the dependencies, run the following:

git clone https://github.com/meetecho/janus-gateway.git
cd janus-gateway

sh autogen.sh

./configure --prefix=/home/schandak/janus-gateway/bin/
-—-disable-aes-gcm

make

make install

make configs

On Mac, the . /configure command should also have
PKG CONFIG_PATH=/usr/local/opt/openssl/lib/pkgconfig

Notes:

- Currently we directly run “sudo apt-get install libnice-dev” to install the
dependency libnice. However, note the warning: "While libnice’ is typically
available in most distros as a package, the version available out of the box in
Ubuntu is known to cause problems. As such, we always recommend manually
compiling and installing the master version of libnice."

- The --disable-aes-gcm flag helped in avoiding an srtp related compilation error®.
Also see the next point.

- For the error “undefined symbol: srtp_crypto_policy_set_aes gcm 256 _16_auth’,

it could be solved by running;:
“export LD LIBRARY PATH=$LD LIBRARY PATH:/usr/lib”

- -—-prefix in configure command allows us to specify the folder where Janus is
installed. SPREFIX denotes this path in the commands below.

7 https://janus.conf.meetecho.com/demos.html

https://janus.conf.meetecho.com/demos.html
https://janus.conf.meetecho.com/docs/FAQ#aesgcm

Running Janus

General Comments

- Torunjanus, type in $PREFIX/bin/janus on the command line.

- To run the html demo server, go to the html folder in the repo root directory, and then
do python3 -m http.server [PORT] (where PORT is optional, and is set to 8000
by default). Then you can open popeye2.stanford.edu:PORT in Chrome. You can also do
php =S 0.0.0.0:8000 to set up a server.

- The relevant code for the streaming is available in plugins/janus streaming.c
within the repo root directory.

- The configuration file for the streaming is at
SPREFIX/etc/Jjanus/janus.plugin.streaming.jcfg.

Streaming audio from file via RTP

Set up RTP streaming

Run ffmpeg -re -stream loop -1 -i infile.mp3 -c:a libopus -f rtp
rtp://127.0.0.1:5002

Notes:

- The command streams an input file to RTP in a loop

- -re is needed when streaming from a file so that all the file is not sent at once, instead
we send at the native frame rate

- -stream loop -1 runs the thinginaloop

- -c:a libopus is needed to make output opus codec which is needed for janus (we
tried -c a:pcm mulaw but that gave an error even though mu-law should be supported
for webrtc®)

- —f rtp sets the output format to rtp protocol

- rtp://127.0.0.1:5002 is the output address. 127.0.0.1 is just localhost, 5002 is the
port number that’ll come up below

Update config file:

- Find rtp-sample section in the config file
- Set audioport to the port from the ffmpeg command.

29

https://developer.mozilla.org/en-US/docs/Web/Media/Formats/WebRTC_codecs#Supported_audio_codecs
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/WebRTC_codecs#Supported_audio_codecs

In the log of the ffmpeg command, you’ll see a line like a=rtpmap: 97

opus/48000/2:in the config set audiopt to 97 and audiortpmap to
opus/48000/2.

After this, just run janus, go to the demo site, and open Streaming demo with mode Opus/VP8
live stream.

Streaming video from file via RTP

Set up RTP streaming

Run ffmpeg -re -stream loop -1 -i input.mp4 -an -c:v libvpx -f rtp
rtp://127.0.0.1:5004 -vn -c:a libopus -f rtp rtp://127.0.0.1:5002

Notes:

The command streams an input file to RTP in a loop

-re is needed when streaming from a file so that all the file is not sent at once, instead
we send at the native frame rate

-stream loop -1 runs the thing in aloop

-c:a libopus is needed to make output opus codec which is needed for janus
-c:v libvpx is needed to make output VP8 codec

-an and -vn are used to generate two separate streams (videos without audio and
audio without video)

-f rtp sets the output format to rtp protocol

rtp://127.0.0.1:5004 is the output address for video.
rtp://127.0.0.1:5002 is the output address for audio.

You can do either video or audio by omitting the appropriate options.

This doesn’t work with mp4 files containing more than 4 audio channels.

Update config file:

Find rtp-sample section in the config file

Set audioport to the port from the ffmpeg command.

Set videoport to the port from the ffmpeg command.

In the log of the ffmpeg command, you’ll see a line like a=rtpmap:97
opus/48000/2: in the config set audiopt to 97 and audiortpmap to
opus/48000/2. Do similar set-up for the video with videoopt to 96 and
videortpmap to VP8/90000.

After this, just run janus, go to the demo site, and open Streaming demo with mode Opus/VP8
live stream.

Notes:

- When video is played, it sometimes shows “No remote video available”. This issue is
also discussed at https://github.com/meetecho/janus-gateway/pull/1972. One potential

solution is to comment the code at
https://github.com/meetecho/janus-gatewayv/blob/8491eb860bf7fdceegsbsfdecoeges3of

be2421c/html/janus.js#1.1921-1.1935.
- Generally the video quality seems a bit patchy and we also saw some issues with

audio/video sync that ideally shouldn’t happen. It’s not clear if the performance issues
are due to (i) ffmpeg encoding speed, (ii) RTP protocol, (iii) Janus, (iv) network
conditions of webrtc connection. These issues were experienced both on the Stanford
Wi-Fi network and via VPN when the system was running on the popeye2 server
located in the EE department at Stanford.

- A few options for ffmpeg that might help in performance: -threads to increase
number of threads, -v £ (for reduced frame size at output™).

Streaming video from YouTube via RTP

Instead of reading from a file one can take input from youtube (either a normal video or a live
stream). For this we can use youtube-dl which can be obtained from https://voutube-dl.org/

(note that the version installed by sudo apt-get is old and doesn’t work anymore). The
following is partly based on an online tutorial®. Documentation for youtube-dl can be found
online*.

First find a youtube video/live stream and copy the url. For example, we’ll use
https://www.voutube.com/watch?v=dQw4wqWegXcQ.

Then run

youtube-dl -f worst -g --prefer-ffmpeg -o -
https://www.youtube.com/watch\?v\=dQwdw9WgXcQ | ffmpeg -threads 40
-re -i - -vn -c:a libopus -f rtp rtp://127.0.0.1:5002 -an -c:v libvpx
-f rtp rtp://127.0.0.1:5004

This basically writes output of youtube-dl to a pipe which is read by ffmpeg and sent to RTP.
The - in the youtube-dl output (-o -) and the ffmpeg input (-i -) denote this fact. For
youtube-dl: -f worst selects worst video quality available on YouTube, and -qg is to quiet

down the logging output. Everything else remains the same. If we use a live stream video on

https://github.com/meetecho/janus-gateway/pull/1972
https://github.com/meetecho/janus-gateway/blob/8491eb860bf7fdcee94b5fdec9e9e430fbe2421c/html/janus.js#L1921-L1935
https://github.com/meetecho/janus-gateway/blob/8491eb860bf7fdcee94b5fdec9e9e430fbe2421c/html/janus.js#L1921-L1935
https://youtube-dl.org/
https://www.youtube.com/watch?v=dQw4w9WgXcQ
https://trac.ffmpeg.org/wiki/Scaling
https://flashphoner.com/how-to-grab-a-video-from-youtube-and-share-it-via-webrtc-in-real-time/
https://github.com/ytdl-org/youtube-dl/blob/master/README.md#readme

YouTube, then we get the live version. This can be used to test the latency of the overall system
using a suitable live stream video, potentially one that includes a timer. The -re flag for
ffmpeg is optional and should be skipped when we are dealing with a live stream on YouTube.

