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A wide class of (lossless) compressors utilize the “prediction + entropy coding” approach, wherein a statistical model
generates predictions for the upcoming symbols given the past and an entropy coder uses the predicted probabilities to
perform compression. In this general framework, a better prediction model directly induces a better compressor.

We propose DZip, a general-purpose compressor for sequential data that exploits the well-known modeling capabilities
of neural networks (NNs) for prediction, followed by arithmetic coding. DZip uses a novel hybrid architecture based
on adaptive and semi-adaptive training. Unlike most NN based compressors, DZip does not require additional training
data and is not restricted to specific data types, only needing the alphabet size of the input data.

Introduction

Based on how the model (predictor) is trained, lossless compression schemes can be categorized into three types:

Static
•The model is trained offline on some external training data and is available during encoding/decoding.

Adaptive
•The model is pseudorandomly initialized and then updated adaptively during encoding/decoding.

•This approach does not require the availability of training data and works quite well for small models.

Semi-adaptive
•The model is trained based only on the input sequence and the training procedure can involve multiple passes
through the input data.

•The trained model is included as part of the compressed file.

•The additional cost is expected to be compensated by the fact that the sequence-specific training will lead to a
better predictive model.

Background

Bootstrap Model: This model is designed keeping in consideration the trade-off between the model size and the
effective compression obtained. This model is trained on the input sequence multiple times and is then stored as a
part of the compressed file.

Supporter Model: This is a significantly larger model in comparison to the Bootstrap model. It is randomly initialized
at the start of encoding/decoding and is then adaptively updated to better estimate the probability of upcoming symbols.

Combined Model: The combined model is a combination of Bootstrap model and the Supporter Model. The logits
(unscaled probabilities) from both the models undergo convex combination to generate the final proabability that is fed
to the entropy coder.

Notations Sr denotes the r th symbol of the sequence S, K denotes the context length, ŷ
r
is the probability vector

for symbol Sr , y r is the onehot encoded ground truth.

Loss Function: Categorical Cross Entropy is used to train the Bootstrap and the Combined model.

L =
|S|∑
k=1

yrk log2
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DZip Framework

Datasets:
We experiment with various real and synthetic sequences as shown in the table below.

Name Length |S| Description
Real Datasets
webster 41.1M 97 HTML data of the 1913 Webster Dictionary, from the Silesia corpus
mozilla 51.2M 255 Tarred executables of Mozilla 1.0, from the Silesia corpus
h. chr20 64.4M 5 Chromosome 20 of H. sapiens GRCh38 reference sequence
h. chr1 100M 5 First 100M bases of chromosome 1 of H. Sapiens GRCh38 sequence
c.e. genome 100M 4 C. elegans whole genome sequence
ill-quality 100M 4 100MB of quality scores for PhiX virus reads sequenced with Illumina
text8 100M 27 First 100M of English text (only) extracted from enwiki9
np-bases 300M 5 Nanopore sequenced reads (only bases) of a human sample
np-quality 300M 91 Quality scores for nanopore sequenced data of a human sample
enwiki9 500M 206 First 500M of the English Wikipedia dump on 2006
Synthetic Datasets
XOR-k 10M 2 Pseudorandom sequence generated as Sn+1 = Sn + Sn−k (mod 2).

Entropy rate 0 bits per character (bpc).
HMM-k 10M 2 Hidden Markov sequence Sn = Xn + Zn (mod 2), with Zn ∼ Bern(0.1),

Xn+1 = Xn +Xn−k (mod 2). Entropy rate 0.46899 bpc.

Experiments & Datasets

DZip on Synthetic datasets

Compressor XOR-20 XOR-30 XOR-50 XOR-70 HMM-20 HMM-30 HMM-50 HMM-70
Gzip 1.20 1.20 1.19 1.19 1.19 1.19 1.19 1.19

LSTM-Compress 4.23 3.19 4.77 3.43 3.02 5.19 3.64 1.01
BSC 0.10 1.01 1.01 1.01 0.69 1.01 1.01 1.01
DZip 1e-3 1e-3 0.9e-3 1.00 0.47 0.47 0.47 1.00

Fig. 3: Synthetic Datasets, XOR and HMM

Comparison of DZip performance on real datasets in bits per character (bpc)

File Len/log2|S| Gzip LSTM BSC DZip Specialized
Compress bpc Model Compressor

webster 41.1M/6.61 2.32 1.23 1.29 1.40 31.33% 1.09
mozilla 51.2M/8.00 2.97 2.05 2.52 2.20 25.13% N/A

h. chr20 64.4M/2.32 2.05 7.82 1.73 1.63 0.92% 1.62
h. chr1 100.3M/2.32 2.14 7.36 1.78 1.68 0.58% 1.65

c.e. genome 100M/2.00 2.15 7.51 1.87 1.81 0.53% 1.72
ill-quality 100M/2.00 0.50 6.48 0.35 0.34 2.79% 0.51

text8 100M/4.75 2.64 1.76 1.68 1.73 9.45% 1.52
enwiki9 500M/7.69 2.72 1.66 1.64 1.50 3.59% 1.43
np-bases 609M/2.32 2.16 8.43 1.86 1.74 0.09% 1.75
np-quality 609M/6.51 5.91 5.47 5.64 5.47 0.57% 5.20

File Length Bootstrap DZip Improvement
only (bpc)

webster 41.1M 1.450 1.399 0.051
mozilla 51.2M 2.250 2.200 0.050
h. chr1 100.3M 1.719 1.678 0.041
ill-quality 100M 0.343 0.342 0.001
enwiki9 500M 1.596 1.502 0.094
np-bases 609M 1.759 1.737 0.022

Fig. 4: DZip on Real Datasets

Results

The main limitation of DZip in its current implementation is the encoding/decoding time. On an average, DZip takes
4-5 minutes/MB in the bootstrap training process, and 5 hours/MB for encoding/decoding. The time taken by DZip
is significantly high because coding has to be performed has to be performed using a single CPU on a single thread for
ensuring symmetrical updates to the model (due to Keras platform limitation).
For comparison, Gzip, LSTM-Compress, and BSC take on average 4.9 seconds/MB, 3 minutes/MB, and 0.07 sec-
onds/MB for compression, respectively, and 0.005 seconds/MB, 4 minutes/MB, and 0.02 seconds/MB for decom-
pression, respectively.

Computational Requirements

Original Github Link: https://github.com/mohit1997/DZip
ArXiv Paper: https://arxiv.org/abs/1911.03572

We have implemented a parallelized variant of DZip using the Pytorch framework which utilizes GPU. This implemen-
tation is 60× (depending on the GPU) faster but the compression and decompression is supported only on the same
machine.

Faster Implementation: https://github.com/mohit1997/Dzip-torch

Code and additional details


