

DeepZip: Lossless Data Compression using Recurrent Neural Networks

Mohit Goyal*, Kedar Tatwawadi, Shubham Chandak, Idoia Ochoa* IT Delhi, UIUC*, Stanford University

Introduction

There has been a tremendous surge in the amount of data generated. New types of data, such as **Genomic data**, **3D-360 degree VR Data**, **Autonomous Driving Point Cloud data** are being generated. A lot of human effort is spent in analyzing the statistics of these new data formats for designing good compressors.

It is well known in information theory that good predictors form good compressors. Thus can neural networks be efficiently used for compression?

Experiments & Datasets

Datasets:

We experiment with the following synthetic datasets

- 1. **i.i.d. Sources**: We consider i.i.d. sources with a variety of parameters.
- 2. Markov-k sources (XOR): Markov-k sources are 0-entropy sources with Markovity of *k*. They are governed by:

 $S_n = S_{n-1} + S_{n-k} \pmod{M}$

- Markov-k sources are difficult to compress, as they are a type of Pseudo-Random-Number-Generated sequences (Lagged Fibonacci PRNG).
- 3. Hidden Markov Model (HMM): We simulate a HMM source where the hidden state follows the Markov-k sequence described earlier.

DeepZip

The DeepZip performs Lossless Compression and consists of:

- 1. Deep Probability Estimator: The Neural Network based block acts as a conditional probability estimator for the next symbol, given the past
- 2. Arithmetic Coder: The Arithmetic coding block uses the conditional probabilities for optimal compression/decompression:

Arithmetic Encoding of i.i.d. source

Model Framework

The Model framework is as follows:

$S_{n+1} = X_n + X_{n-k} + Z_n \pmod{M}$.

Here, the hidden process X_n is Markov-k, and Z_n is the added i.i.d. noise.

We also experimented with the following real datasets:

• text8 Dataset: Wikipedia text dataset.

- HGP-Chr1: The Human Genome Project DNA Chromosome-1 reference
- C. elegans Genome: C. elegans whole genome data
- PhiX quality dataset: Genomic quality value dataset from sequencing of PhiX virus

Results

- The Model framework is as follows:
- 1. **Distribution as output:** The RNN based model outputs a distribution over the alphabet set, which is the input to the Arithmetic Encoder.
- 2. Arithmetic Coder State: Arithmetic Encoder can be imagined as a FSM which keeps the range State, which is passed on as in the RNN.
- 3. Causality of Input: The RNN Estimator needs to be causal, and can have input features based only on the previously encoded symbols.
- 4. Weight Update: The weight update (if performed) should be performed in the exactly same way in the encoder and the decoder.

 (s_{r-K}) (S_{r-K+1})

(a)

S_{r-K} S_{r-K+1} \cdots S_{r-1}

(b)

a 2. ISTM and ISTM m

DeepZip on Synthetic datasets

Dataset	Soci Longth	Czin	BSC	DeepZip			
Dataset	Seq. Length	CZIP	DJC	FC	biGRU	LSTM-multi	
IID	10M	0.81	0.60	0.98	0.76	1.20	
XOR20	10M	1.51	0.06	0.40	0.18	0.63	
XOR30	10M	1.51	1.26	0.40	0.18	1.87	
XOR40	10M	1.49	1.26	0.40	1.43	1.87	
XOR50	10M	1.48	1.26	0.40	0.18	0.63	
HMM20	10M	1.49	0.87	0.98	0.76	1.87	
HMM30	10M	1.49	1.26	0.98	0.76	1.21	
HMM40	10M	1.49	1.26	0.98	1.42	1.87	

Fig. 5: synthetic datasets, XOr, HMM and IID

Comparison of DeepZip performance on real datasets

Datacot	Seq. Length	Gzip	BSC	DeepZip		
Dataset				FC	biGRU	LSTM-multi
H. chr1	249M	60.58	50.43	49.37	48.80	48.56
C. E. chr1	15M	4.03	3.49	3.81	3.58	4.02
C. E. genome	100M	26.97	23.38	23.41	23.13	23.41
text8	100M	33.05	20.95	25.49	23.37	26.71
PhiX Quality	100M	6.22	4.38	4.58	4.35	4.79

RNN-Arithmetic Encoder Framework

RNN-Arithmetic Decoder Framework

	Dataset	FC		bi	GRU	LSTM-multi		
	Dataset	Model	Sequence	Model	Sequence	Model	Sequence	
	H. chr1	0.39	48.98	0.17	48.62	0.62	47.95	
	C. E. chr1	0.39	3.42	0.17	3.40	0.62	3.98	
	C. E. genome	0.39	23.02	0.17	22.96	0.62	22.79	
-	text8	0.40	25.09	1.74	21.63	0.63	26.09	
	PhiX Quality	0.39	4.19	0.17	4.18	0.62	4.18	

Fig. 6: DeepZip on real text, genomic datasets

Code and additional details

Github Link: https://github.com/mohit1997/DeepZip ArXiv Paper: https://arxiv.org/abs/1811.08162