Stanford

Overcoming high nanopore basecaller error rates for DNA storage via basecaller-decoder integration and convolutional codes

Shubham Chandak Stanford University ICASSP 2020

Team and funding

Reyna

Hulett

Shubham Kedar Chandak Tatwawadi Joachim Neu

Jay Mardia Billy Matt Lau Kubit Peter Griffin

Tsachy Weissman

Mary Wootters

Hanlee Ji

SemiSynBio: Highly scalable random access DNA data storage with nanopore-based reading

Beckman Center Innovative Technology Seed Grant Scalable Long-Term DNA Storage with Error Correction and Random-Access Retrieval

National Institutes of Health

Motivation

40,000 x 5 TByte HDDs 40 tons

10s of years

40,000 x 5 TByte HDDs 40 tons

10s of years

DNA 1 gram

1,000s of years

40,000 x 5 TByte HDDs 40 tons

10s of years

1,000s of years

DNA storage setup

Building block: synthesis

• Ability to "write/synthesize" artificial DNA (sequence of {A,C,G,T})

Current ability: short ssDNA oligos (~150nt) at scale

DNA Synthesis is not perfect: Usually has ~1% insertion/Deletion error

Building block: sequencing

• Nanopore sequencing: portable, real time

https://directorsblog.nih.gov/2018/02/06/sequencing-human-genome-with-pocket-sized-nanopore-device/

Typical DNA Storage System

Challenges

- High basecall error rates for nanopore sequencing
 - 5-10% edit distance
 - Predominantly insertion and deletion errors
- Lack of good error correction codes for this setting

Challenges

- High basecall error rates for nanopore sequencing
 - 5-10% edit distance
 - Predominantly insertion and deletion errors
- Lack of good error correction codes for this setting
- Most previous works rely on consensus over multiple reads high reading cost
 - Sequence the input lot of times (~30-40x)
 - Cluster by *index*, and perform "averaging" to reduce the error

Previous Works

[2] L. Organick *et al.*, "Random access in large-scale DNA data storage," *Nature biotechnology*, vol. 36, no. 3, p. 242, 2018.

[3] Randolph Lopez et al., "DNA assembly for nanopore data storage readout," Nature communications, vol. 10, no. 1, pp. 2933, 2019.

Methods

Nanopore Physics

Nanopore Sequencing Model

Nanopore sequencing channel

- Memory (inter-symbol interference)
- Base skips
- Fading
- Random symbol duration
- Noise

Nanopore Sequencing Model

Nanopore sequencing channel

- Memory (inter-symbol interference)
- Base skips
- Fading
- Random symbol duration
- Noise

VERY HARD TO MODEL AND ANALYZE FAITHFULLY

Source: "Models and Information-Theoretic Bounds for Nanopore Sequencing", Wei Mao et al., IEEE Trans. Inf. Theory 2017

Nanopore Sequencing Model

Nanopore sequencing channel

- Memory (inter-symbol interference)
- Base skips
- Fading
- Random symbol duration
- Noise

VERY HARD TO MODEL AND ANALYZE FAITHFULLY

COMBINE STRENGTHS OF MACHINE LEARNING & CODING THEORY!

Source: "Models and Information-Theoretic Bounds for Nanopore Sequencing", Wei Mao et al., IEEE Trans. Inf. Theory 2017

Key idea

Using Flappie basecaller (Oxford Nanopore)

Key idea

Using Flappie basecaller (Oxford Nanopore)

Key idea

Convolutional Codes as the Inner Code

Basecaller-decoder integration

NN-modeling based transition probabilities

Overall Inner Code design

Experiments and results

Experiments

- Data: 11KB of data: The Gettysburg Address, UN Declaration, "I have a Dream" Speech, poem collections, ...
- Final Error Correction Code Design:
 - Reed Solomon outer code: 30% redundancy (default)
 - Pretrained Model from the ONT Flappie Basecaller
- Synthesis: Data Synthesized using CustomArray synthesis, into oligos of length ~165
- Experiments:
 - Rate of convolution code: r = 1/2, 3/4, 5/6
 - Memory: m = 8,11,14
 - List Size: 4, 8

Results

[6] L. Organick *et al.*, "Random access in large-scale DNA data storage," *Nature biotechnology*, vol. 36, no. 3, p. 242, 2018.

[22] Randolph Lopez et al., "DNA assembly for nanopore data storage readout," Nature communications, vol. 10, no. 1, pp. 2933, 2019.

Conclusions and future work

- Novel error-correction mechanism for nanopore sequencing based DNA storage
 - Use "soft-information" from raw signal to improve decoding
 - Use neural net in basecaller to distil information from "hard-to-model" raw signal
 - Use convolutional codes that align nicely with sequential nanopore model
- Requires 3x fewer reads for decoding than previous works

Conclusions and future work

- Novel error-correction mechanism for nanopore sequencing based DNA storage
 - Use "soft-information" from raw signal to improve decoding
 - Use neural net in basecaller to distil information from "hard-to-model" raw signal
 - Use convolutional codes that align nicely with sequential nanopore model
- Requires 3x fewer reads for decoding than previous works
- Future work:
 - Optimization of convolutional code and CRC parameters
 - Finetuning of neural network model and use of improved basecallers
 - Application to other novel synthesis methodologies

Thank You!

Code and data available at

https://github.com/shubhamchandak94/nanopore_dna_storage