LFZip: Lossy compression of multivariate time series data via improved prediction

Shubham Chandak Stanford University DCC 2020 Paper ID: 111

Joint work with

- Kedar Tatwawadi, Stanford
- Tsachy Weissman, Stanford
- Chengtao Wen, Siemens
- Max Wang, Siemens
- Juan Aparicio, Siemens

Outline

- Motivation
- Problem formulation and our contribution
- Previous work
- Methods
- Results
- Conclusions and future work

Motivation

- Sensors are omnipresent: generating vast amounts of data
- Data usually in form of real-valued time series

Nanopore genome sequencing

Figure credit:

https://directorsblog.nih.gov/2018/02/06/sequencing-human-genome-with-pocket-sized-nanopore-device/ https://semielectronics.com/sensors-lifeblood-internet-things/

Motivation

- Floating-point time series data typically noisy
 - Lossy compression can lead to vast gains without affecting performance of downstream applications
- Multivariate time series
 - Different variables can have correlations
- Compression performed on computationally constrained devices
 - Low CPU and memory usage (streaming compression)

Our contribution

- LFZip: Lossy compressor for time series data
- Works with user-specified maximum absolute error
- Multivariate time series compression
- Based on prediction-quantization-entropy coder framework
 - Normalized Least Mean Squares (NLMS) prediction
 - Neural Network prediction
- Significant improvement for a variety of datasets
- Open source: https://github.com/shubhamchandak94/LFZip

Previous work

- Swinging door and critical aperture
 - retain a subset of the points in the time series based on the maximum error constraint and use linear interpolation during decompression
- SZ, ISABELA, NUMARCK
 - polynomial/linear regression model followed by quantization
 - SZ current state-of-the-art
- Bristol, E. H. "Swinging door trending: Adaptive trend recording?." *ISA National Conf. Proc., 1990.* 1990.

- Williams, George Edward. "Critical aperture convergence filtering and systems and methods thereof." U.S. Patent No. 7,076,402. 11 Jul. 2006. - Liang, Xin, et al. "An efficient transformation scheme for lossy data compression with point-wise relative error bound." 2018 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2018.

- Lakshminarasimhan, Sriram, et al. "ISABELA for effective in situ compression of scientific data." *Concurrency and Computation: Practice and Experience* 25.4 (2013): 524-540.

- Chen, Zhengzhang, et al. "NUMARCK: machine learning algorithm for resiliency and checkpointing." *SC'14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis*. IEEE, 2014.

Encoder architecture

Decoder architecture

Predictor

- Predict based on past window (default 32 steps)
- NLMS (normalized least mean square)
 - Adaptively trained (gradient descent) after every step
 - Multivariate: predict based on past values for all variables

Predictor

- Predict based on past window (default 32 steps)
- NLMS (normalized least mean square)
 - Adaptively trained (gradient descent) after every step
 - Multivariate: predict based on past values for all variables
- NN (neural network)
 - Offline training performed on separate dataset
 - We tested fully connected (FC) and RNN models (results shown for FC)
 - To simulate quantization error during training, we add random noise

Quantizer and entropy coder

• If prediction error above $2^{16}\epsilon$, set $\hat{x}_t = x_t$

Quantizer and entropy coder

- If prediction error above $2^{16}\epsilon$, set $\hat{x}_t = x_t$
- Entropy coding: BSC (<u>https://github.com/IlyaGrebnov/libbsc</u>)
 - High performance compressor based on BWT

Results: datasets

Namo	Length	Description	BSC lossless
Name		Description	compression ratio
acc	$3.54 \mathrm{M}$	Heterogeneity Activity Recognition - smartwatch accelerometer 24	2.84
gyr	$3.21 \mathrm{M}$	Heterogeneity Activity Recognition - smartwatch gyroscope 24	2.79
pow	$2.05 \mathrm{M}$	Household electric power consumption - active power 25	5.21
ppg	$0.50 \mathrm{M}$	Blood volume pulse/photoplethysmography (PPG) 26	2.48
gas	$0.93 \mathrm{M}$	Home activity monitoring - MOX gas sensors resistance $[27]$	4.97
dna	$1.17 \mathrm{M}$	Nanopore DNA sequencing raw current data	4.55
vib	$1.55 \mathrm{M}$	Siemens healthy tool vibration data	1.79
sen	$0.75\mathrm{M}$	Siemens sensor data	4.27

Results: datasets

Results: datasets

Results: univariate (NLMS prediction)

Deteret	Commercian	Maximum error ϵ				Detect	Compage	Maximum error ϵ		
Dataset	Compressor	10^{-3}	10^{-2}	10^{-1}		Dataset	Compressor	10^{-3}	10^{-2}	10^{-1}
	CA	2.84	3.01	5.19			CA	16.97	64.36	245.51
acc	SZ	3.25	5.05	11.00		gas	SZ	22.69	75.84	299.65
	LFZip (NLMS)	3.55	5.86	12.71			LFZip (NLMS)	31.56	101.48	252.55
gyr	CA	2.88	4.27	10.75	1		CA	4.54	4.54	4.86
	SZ	4.26	8.08	24.79		dna	SZ	4.03	4.55	8.62
	LFZip (NLMS)	6.05	12.26	28.77			LFZip (NLMS)	3.04	4.48	8.40
pow	CA	5.05	6.23	12.47]		CA	2.07	4.85	18.51
	SZ	5.09	9.65	23.99		vib	SZ	4.77	11.77	40.61
	LFZip (NLMS)	4.17	7.37	17.98			LFZip (NLMS)	10.64	22.36	53.15
ppg	CA	2.48	2.49	2.74]		CA	4.34	7.60	125.04
	SZ	2.43	2.80	4.39		sen	SZ	6.55	20.58	179.87
	LFZip (NLMS)	3.18	5.28	9.13			LFZip (NLMS)	6.88	21.70	180.98

Results: univariate (NLMS prediction)

2.5 2.0 1.51.00.5 0.0 -0.5-1.0-1.5600000 600050 600100 600150 600200 600250 (f) dna

LFZip performs better

LFZip performs worse

Results: univariate (NN prediction)

Detegat	Comprogram	Maximum error ϵ		
Dataset	Compressor	10^{-2}	10^{-1}	
	SZ	4.64	9.38	
acc	LFZip (NLMS)	5.10	10.19	
	LFZip (NN)	5.26	10.78	
	SZ	6.99	20.96	
gyr	LFZip (NLMS)	10.22	23.33	
	LFZip (NN)	10.35	25.00	
	\mathbf{SZ}	9.44	23.57	
pow	LFZip (NLMS)	7.21	17.74	
	LFZip (NN)	9.29	25.38	
	SZ	4.45	8.67	
dna	LFZip (NLMS)	4.46	8.40	
	LFZip (NN)	4.60	8.99	

Results: multivariate (NLMS prediction)

Detect	Mada	Maximum error ϵ				
Dataset	Mode	10^{-3}	10^{-2}	10^{-1}		
acc	univariate	3.588	5.931	13.220		
(X, Y, Z)	multivariate	3.592	5.934	13.250		
gyr	univariate	6.295	13.605	34.181		
(X, Y, Z)	multivariate	6.409	13.763	34.597		
gas	univariate	26.239	63.304	152.378		
(8 sensors)	multivariate	27.614	75.179	204.006		
sen	univariate	6.627	19.669	166.568		
(3 sensors)	multivariate	6.669	20.334	304.878		

Results: computation

- LFZip (NLMS): ~2M timesteps/s for univariate
 - Slower than SZ but practical for most applications
- LFZip (NN): ~1K timesteps/s for the fully connected model used
 - Run single-threaded on a CPU to allow reproducibility
 - Requires further optimizations for practical usage

Conclusions and future work

- LFZip: error-bounded lossy compressor for multivariate floating-point time series
- Based on prediction-quantization-entropy coder framework
- Achieve improved compression using NLMS and NN models

Conclusions and future work

- LFZip: error-bounded lossy compressor for multivariate floating-point time series
- Based on prediction-quantization-entropy coder framework
- Achieve improved compression using NLMS and NN models
- Future work includes
 - optimized implementation for the neural network based framework
 - extension of the framework to multidimensional datasets
 - exploration of other predictive models to further boost compression

Thank You!

Check out <u>https://github.com/shubhamchandak94/LFZip</u>