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Motivation



The amount of stored data is growing exponentially:

Source: https://www.seagate.com/our-story/data-age-2025/
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40,000 x 5 TByte HDDs
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DNA
1 gram

1,000s of years Easy duplication



https://catalogdna.com/uncategorized/hot-news-for-the-summer-from-catalog/

https://catalogdna.com/uncategorized/hot-news-for-the-summer-from-catalog/


DNA storage setup



How to store data in DNA sequences?
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http://www.customarrayinc.com/ 
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How to store data in DNA sequences?

Segmentation

File

Storage

Sequencing + Basecalling

Reconstructed file

Outer code Inner code Synthesis

Sequenced reads

Decoding

- Separate codes for erasure and error correction
- Heavy reliance on “consensus”



Previous works
● Multiple previous works focusing on:

○ Error correction coding

○ Random access to subsets of synthesized sequences using PCR primers

○ Scalable and cost effective synthesis techniques

○ Different sequencing platforms

○ Theoretical analysis
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Theoretical analysis



Read-write cost tradeoff

● Fundamental quantities from a coding theory perspective:

○ Writing cost (bases synthesized/message bit)

○ Reading cost (bases sequenced/message bit) 

○ Note: “Coverage” (= bases sequenced/bases synthesized) doesn’t capture the actual reading cost.
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Read-write cost tradeoff

● Fundamental quantities from a coding theory perspective:

○ Writing cost (bases synthesized/message bit)

○ Reading cost (bases sequenced/message bit) 

○ Note: “Coverage” (= bases sequenced/bases synthesized) doesn’t capture the actual reading cost.

● Fixed sequence length means asymptotic information capacity = 0!

○ Previous works assumed sequence length growing logarithmically in number of sequences

○ Does not capture the limitations posed by short sequence length
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Simplified model for analysis 



Simplified model for analysis 

Use a memoryless approximation and obtain asymptotically 
achievable tradeoff between cw and cr



Two strategies

Segment Outer Inner 

SegmentCode

Strategy 1: Inner/outer code separation

Strategy 2: Single large block code



Simulation results
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Proposed approach
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Results



Experimental Parameters
• Multiple parameter experiments, storing around 200 KB data each.

• CustomArray synthesis, length 150 including primers.

• Sequenced with Illumina iSeq.

• Total error rate around 1.3% (substitution: 0.4%, deletion: 0.85%, insertion: 
0.05%) – cheaper and noisier synthesis as compared to previous works.



Experimental Results

1. Y. Erlich and D. Zielinski, “DNA Fountain enables a robust and efficient storage architecture," Science, vol. 355, no. 6328, pp. 950-954, 2017.
2. L. Organick et al., “Random access in large-scale DNA data storage," Nature biotechnology, vol. 36, no. 3, p. 242, 2018.
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Coverage variation
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More analysis in paper



Conclusions

● Introduced novel coding schemes for Illumina sequencing based DNA storage

○ Improved read/write cost tradeoff despite noisier synthesis

● Code and data: https://github.com/shubhamchandak94/LDPC_DNA_storage

● Biorxiv: https://www.biorxiv.org/content/10.1101/770032v1

https://github.com/shubhamchandak94/LDPC_DNA_storage
https://www.biorxiv.org/content/10.1101/770032v1


Future work

● Possibilities for improvement:

○ Optimized LDPC codes, e.g., using protographs

○ Better codes for insertion/deletion: LDPC with markers, VT codes

○ Check out q-ary VT codes implementation: https://github.com/shubhamchandak94/VT_codes/
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● Possibilities for improvement:

○ Optimized LDPC codes, e.g., using protographs

○ Better codes for insertion/deletion: LDPC with markers, VT codes

○ Check out q-ary VT codes implementation: https://github.com/shubhamchandak94/VT_codes/

● Plan to integrate these with random access and repeated reading.

● Long term vision: Nanopore sequencing + cheaper and noisier synthesis 
techniques

https://github.com/shubhamchandak94/VT_codes/
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Thank You!

Biorxiv: https://www.biorxiv.org/content/10.1101/770032v1
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