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Motivation



The amount of stored data is growing exponentially:

Worldwide Byte Shipments by Storage Media Type
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Hot News for the Summer from CATALOG

POSTED BY : SEAN MIHM / 0 COMMENTS | UNDER : UNCATEGORIZED

CATALOG Encodes Wikipedia Into DNA!

CATALOG puts Wikipedia into DNA (Y ~»

Wikipedia

CATALOG

Watch later  Share

https://catalogdna.com/uncategorized/hot-news-for-the-summer-from-catalog/
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DNA storage setup



How to store data in DNA sequences?
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How to store data in DNA sequences?
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How to store data in DNA sequences?
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How to store data in DNA sequences?
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How to store data in DNA sequences?
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Previous works

e Multiple previous works focusing on:
o  Error correction coding
o Random access to subsets of synthesized sequences using PCR primers
o Scalable and cost effective synthesis techniques
o Different sequencing platforms

o Theoretical analysis
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Theoretical analysis



Read-write cost tradeoff

e Fundamental quantities from a coding theory perspective:
o  Writing cost (bases synthesized/message bit)
o Reading cost (bases sequenced/message bit)

o Note: “Coverage” (= bases sequenced/bases synthesized) doesn’t capture the actual reading cost.
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Read-write cost tradeoff

e Fundamental quantities from a coding theory perspective:
o  Writing cost (bases synthesized/message bit)
o Reading cost (bases sequenced/message bit)

o Note: “Coverage” (= bases sequenced/bases synthesized) doesn’t capture the actual reading cost.

e Fixed sequence length means asymptotic information capacity = 0!

o Previous works assumed sequence length growing logarithmically in number of sequences

o Does not capture the limitations posed by short sequence length
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Simplified model for analysis
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Two strategies

| Outer 2 lmgz

Strategy 1: Inner/outer code separation

=) Emm) ——

Strategy 2: Single large block code




Simulation results
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Proposed framework



Proposed approach
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Results



Experimental Parameters

* Multiple parameter experiments, storing around 200 KB data each.
* CustomArray synthesis, length 150 including primers.
* Sequenced with Illumina iSeq.

* Total error rate around 1.3% (substitution: 0.4%, deletion: 0.85%, insertion:
0.05%) - cheaper and noisier synthesis as compared to previous works.



Experimental Results
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Coverage variation
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Experimental Results

Higher redundancy codes
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Conclusions

e Introduced novel coding schemes for Illumina sequencing based DNA storage

o Improved read/write cost tradeoff despite noisier synthesis

e Code and data: https://github.com/shubhamchandak94/LDPC DNA storage

e Biorxiv: https://www.biorxiv.org/content/10.1101/770032v1



https://github.com/shubhamchandak94/LDPC_DNA_storage
https://www.biorxiv.org/content/10.1101/770032v1

Future work

e Possibilities for improvement:
o Optimized LDPC codes, e.g., using protographs
o Better codes for insertion/deletion: LDPC with markers, VT codes

o Checkout g-ary VT codes implementation: https://github.com/shubhamchandak94/VT codes/
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Future work

e Possibilities for improvement:
o Optimized LDPC codes, e.g., using protographs
o Better codes for insertion/deletion: LDPC with markers, VT codes

o Checkout g-ary VT codes implementation: https://github.com/shubhamchandak94/VT codes/

e Planto integrate these with random access and repeated reading,.

e Longterm vision: Nanopore sequencing + cheaper and noisier synthesis
techniques
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Backup



We first compute the optimal tradeoff between ¢y and ¢,

when € = 0, i.e., the reads are error-free. In this case, for

large enough n, we can use the Poisson(\) approximation

for the number of times each sequence is observed with Cw

A = ¢;/cw. Since the probability of seeing zero copies of Cr 2 Cy loge C——l
a sequence is e, this gives us an erasure channel with W
capacity 1 —e~* [20]. For reliable recovery, we need that
the rate 1/cy be less than the capacity. This gives us

e~ Ntk (ko ¥ k1> 1 - efock
(k)o —+ kl)' ko

; = (ko—k1) In 126

P((ko, k1) | 0) =

((k()a kl)
P((ko, k1) | 1

LLR(ko, k1) = In :
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