
SPRING: A next generation compressor for
FASTQ data

Shubham Chandak

Stanford University

Allerton Conference, 3rd October 2018

Joint work with

I Kedar Tatwawadi, Stanford University

I Idoia Ochoa, UIUC

I Mikel Hernaez, UIUC

I Tsachy Weissman, Stanford University

Outline

Introduction
High-Throughput Sequencing
Entropy of reads

Methods

Results

High-Throughput Sequencing

~ 300 – 500 bases ~ 100 –150 bases

Genome ~ 3 billion bases

FASTQ format

File 1
@ERR174324.1 HSQ1009_86:1:1101:1192:2116/1
ATTCNGTCACTTCTCACCAGGCCCCTCATTCAACACTGGGAATTAAAATTCGAC...
+
CCCF#2ADHHHHHJJJIJJJJIJJJJJJJJGIJJJJJJJJIJJJIJJJJJGIJJ...

⋮

File 2
@ERR174324.2 HSQ1009_86:1:1101:1192:2116/2
CAGANAGAGACTCTGTCTCAAAAAAACAAACAAACAAACAAACAAAAAGTCTTA...
+
CCCF#2ADHFHHHJIJJJJJJJJJJJJJJJJJJIJJJJHIIJJJJJJJJIIIJJ...

⋮

Quality scores

Read

Read identifier

Read order - unpaired

1
2
3
4
5

6

2
6
1
4
3

5

Original order in FASTQ New order (arbitrary)

Read order - paired

1
2
3
4
5

6

Original order in FASTQ

2
6
1
4
3
5

New order (preserves read pairing
but pairs ordered arbitrarily)

Entropy of reads (ordered)

Genome (length !)

" noiseless
unpaired reads

Simple case

H(ordered reads) = H(genome) + H(ordered reads|genome)

−H(genome|ordered reads)

For typical datasets, last term is negligible:

H(ordered reads) . H(genome)︸ ︷︷ ︸
Store genome

+ n log2m︸ ︷︷ ︸
Store positions of
reads in genome

Entropy of reads (ordered)

Genome (length !)

" noiseless
unpaired reads

Simple case

H(ordered reads) = H(genome) + H(ordered reads|genome)

−H(genome|ordered reads)

For typical datasets, last term is negligible:

H(ordered reads) . H(genome)︸ ︷︷ ︸
Store genome

+ n log2m︸ ︷︷ ︸
Store positions of
reads in genome

Entropy of reads (unordered)

H(unordered reads) . H(genome)︸ ︷︷ ︸
Store genome

+ log2

(
m + n − 1

m − 1

)
︸ ︷︷ ︸

Store positions of
reads in genome

I
(m+n−1

m−1

)
= number of ways to distribute n indistinguishable

balls into m distinguishable boxes.

I Achievability - sort reads by genome position and entropy
code differences of read positions.

Entropy of reads (example)

Example: For human genome and read length 100,

Coverage Entropy of ordered reads Entropy of unordered reads

50x 6.7 GB 1.1 GB
100x 12.8 GB 1.4 GB

Table 1: Coverage = average number of reads covering a base in the
genome

Entropy of reads (general)

In general, entropy of reads with
(∗) exact order preserved &
(∗∗) only pairing preserved (ordering of read pairs discarded):

H(reads) . H(genome)︸ ︷︷ ︸
Store genome

+

{
(∗) n

2 log2m

(∗∗) log2
(m+ n

2
−1

m−1

) }︸ ︷︷ ︸
Store positions of

read pairs in genome

+
n

2
(H(insert size) + 1)︸ ︷︷ ︸
Store insert size &

orientation

+ nH(noise)︸ ︷︷ ︸
Store noisy bases

Upper bound suggests compression scheme

Outline

Introduction
High-Throughput Sequencing
Entropy of reads

Methods

Results

Read compression

1. Find “genome”
I Reorder reads
I Find consensus

2. Encode reads

3. Compress streams

Reorder reads (simplified)

I Index reads by specific substrings using hash tables

I For the current read, try to find an overlapping read within
small Hamming distance

I Example (reads indexed by prefix):

GATCGTACGTATGATGGTCAGTA

I Repeat process with the new read

Reorder reads (simplified)

I Index reads by specific substrings using hash tables

I For the current read, try to find an overlapping read within
small Hamming distance

I Example (reads indexed by prefix):

GATCGTACGTATGATGGTCAGTA

I Repeat process with the new read

Reorder reads (simplified)

I Index reads by specific substrings using hash tables

I For the current read, try to find an overlapping read within
small Hamming distance

I Example (reads indexed by prefix):

ACGATCGTACGTACGATCGTCAG

GATCGTACGTATGATGGTCAGTA

No similar read with highlighted index found → shift

I Repeat process with the new read

Reorder reads (simplified)

I Index reads by specific substrings using hash tables

I For the current read, try to find an overlapping read within
small Hamming distance

I Example (reads indexed by prefix):

ACGATCGTACGTACGATCGTCAG

GATCGTACGTATGATGGTCAGTA

No similar read with highlighted index found → shift

I Repeat process with the new read

Reorder reads (simplified)

I Index reads by specific substrings using hash tables

I For the current read, try to find an overlapping read within
small Hamming distance

I Example (reads indexed by prefix):

ACGATCGTACGTACGATCGTCAG

GATCGTACGTATGATGGTCAGTA

Next read found!

I Repeat process with the new read

Reorder reads (simplified)

I Index reads by specific substrings using hash tables

I For the current read, try to find an overlapping read within
small Hamming distance

I Example (reads indexed by prefix):

ACGATCGTACGTACGATCGTCAG

GATCGTACGTATGATGGTCAGTA

Next read found!

I Repeat process with the new read

Encode reads

noise noisepos
ACTGCTGGCTGCTGCTAGC GT 7,16 7,9
CTCCTAGCTGCTGCCAGCC C 3 3
GCTAGCTACTGCCAGCCTA A 8 8
GCTCGCTACTGTCCGCCTA CATC 4,8,12,14 4,4,4,2

ACTGCTAGCTGCTGCCAGCCTA seq
(Reference Sequence)

Delta
encoding

Majority

I Read positions and insert sizes encoded based on the mode
(order preserving or not)

I All streams compressed with BSC, a BWT-based compressor

Encode reads

noise noisepos
ACTGCTGGCTGCTGCTAGC GT 7,16 7,9
CTCCTAGCTGCTGCCAGCC C 3 3
GCTAGCTACTGCCAGCCTA A 8 8
GCTCGCTACTGTCCGCCTA CATC 4,8,12,14 4,4,4,2

ACTGCTAGCTGCTGCCAGCCTA seq
(Reference Sequence)

Delta
encoding

Majority

I Read positions and insert sizes encoded based on the mode
(order preserving or not)

I All streams compressed with BSC, a BWT-based compressor

Quality value and read identifier compression

I If read order not preserved, sort quality values and read
identifiers according to new read order

I Standard techniques used for compression

Quality value and read identifier compression

I If read order not preserved, sort quality values and read
identifiers according to new read order

I Standard techniques used for compression

Modes

I Lossless (default)

I Recommended lossy
I Read order discarded (read pairing still preserved)
I Quality values quantized using Illumina 8-level binning
I Read identifiers discarded

Modes

I Lossless (default)
I Recommended lossy

I Read order discarded (read pairing still preserved)
I Quality values quantized using Illumina 8-level binning
I Read identifiers discarded

Outline

Introduction
High-Throughput Sequencing
Entropy of reads

Methods

Results

Results

Organism Cvg. FASTQ Gzip FaStore SPRING

P. aeruginosa 50 768 MB 279 MB 145 MB 115 MB
Metagenomic - 19.3 GB 6.9 GB 3.6 GB 3.2 GB
H. sapiens 28 227 GB 74 GB 36 GB 29 GB
H. sapiens* 25 196 GB 36 GB 11 GB 7 GB
H. sapiens* 100 788 GB 145 GB 34 GB 26 GB

I * sequenced with NovaSeq technology with only 4 quality
levels (40 levels for others).

I Similar improvements in recommended lossy mode with
20%-50% compression gains over lossless mode.

Results

Organism Cvg. FASTQ Gzip FaStore SPRING

P. aeruginosa 50 768 MB 279 MB 145 MB 115 MB
Metagenomic - 19.3 GB 6.9 GB 3.6 GB 3.2 GB
H. sapiens 28 227 GB 74 GB 36 GB 29 GB
H. sapiens* 25 196 GB 36 GB 11 GB 7 GB
H. sapiens* 100 788 GB 145 GB 34 GB 26 GB

I * sequenced with NovaSeq technology with only 4 quality
levels (40 levels for others).

I Similar improvements in recommended lossy mode with
20%-50% compression gains over lossless mode.

Results - read compression

Results for read compression of human NovaSeq datasets:

Tool Mode
Coverage

25x 100x

SPRING order preserving 3.0 GB 10.1 GB
SPRING pairing preserving 2.0 GB 5.7 GB
FaStore pairing preserving 6.1 GB 13.7 GB

Conclusion

I SPRING: FASTQ compressor
I Compression improvements of 1.2x-1.8x on human data
I Practical computational requirements
I Several other features: random access, long read compression

...
I Github: https://github.com/shubhamchandak94/SPRING/

I Future work: integrate with MPEG-G standard for genomic
information representation (https://mpeg-g.org/)

https://github.com/shubhamchandak94/SPRING/
https://mpeg-g.org/

Conclusion

I SPRING: FASTQ compressor
I Compression improvements of 1.2x-1.8x on human data
I Practical computational requirements
I Several other features: random access, long read compression

...
I Github: https://github.com/shubhamchandak94/SPRING/

I Future work: integrate with MPEG-G standard for genomic
information representation (https://mpeg-g.org/)

https://github.com/shubhamchandak94/SPRING/
https://mpeg-g.org/

Thank You!

References

I S. Chandak, K. Tatwawadi, I. Ochoa, M. Hernaez and T.
Weissman; SPRING: A next-generation compressor for
FASTQ data, Submitted.

I S. Chandak, K. Tatwawadi, T. Weissman; Compression of
genomic sequencing reads via hash-based reordering:
algorithm and analysis, Bioinformatics, Volume 34, Issue 4, 15
February 2018, Pages 558–567

I L. Roguski, I. Ochoa, M. Hernaez, S. Deorowicz; FaStore: a
space-saving solution for raw sequencing data, Bioinformatics,
Volume 34, Issue 16, 15 August 2018, Pages 2748–2756

	Introduction
	High-Throughput Sequencing
	Entropy of reads

	Methods
	Results

