

Understanding the Amazon Rainforest from Space using CNNs

CS231N Spring 2017

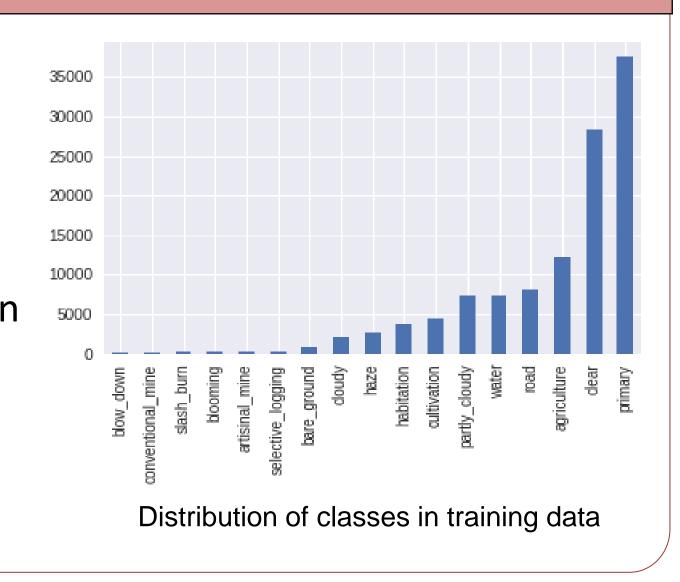
Shubham Chandak, Vamsi Chitters, Sagar Honnungar

INTRODUCTION

- Rapid deforestation in the Amazon basin has had a devastating impact on biodiversity and climate.
- Automated classification of satellite imagery based on land use patterns and atmospheric conditions can aid in understanding the causes of deforestation.
- With this goal, Planet Labs, builder of Earthimaging satellites, has hosted a Kaggle contest by providing high resolution images of the Amazon basin.

PROBLEM STATEMENT

- Multi-label classification of satellite images into 17 classes:
 - Weather classes
 - Major land cover/use classes
- Rare land cover/use classes
- Evaluation is based on *F2* score:


$$F_{\beta} = (1 + \beta^2) \frac{pr}{\beta^2 p + r}$$

where $\beta=2$, p and r are precision and recall.

Higher penalty for false negatives.

DATASET

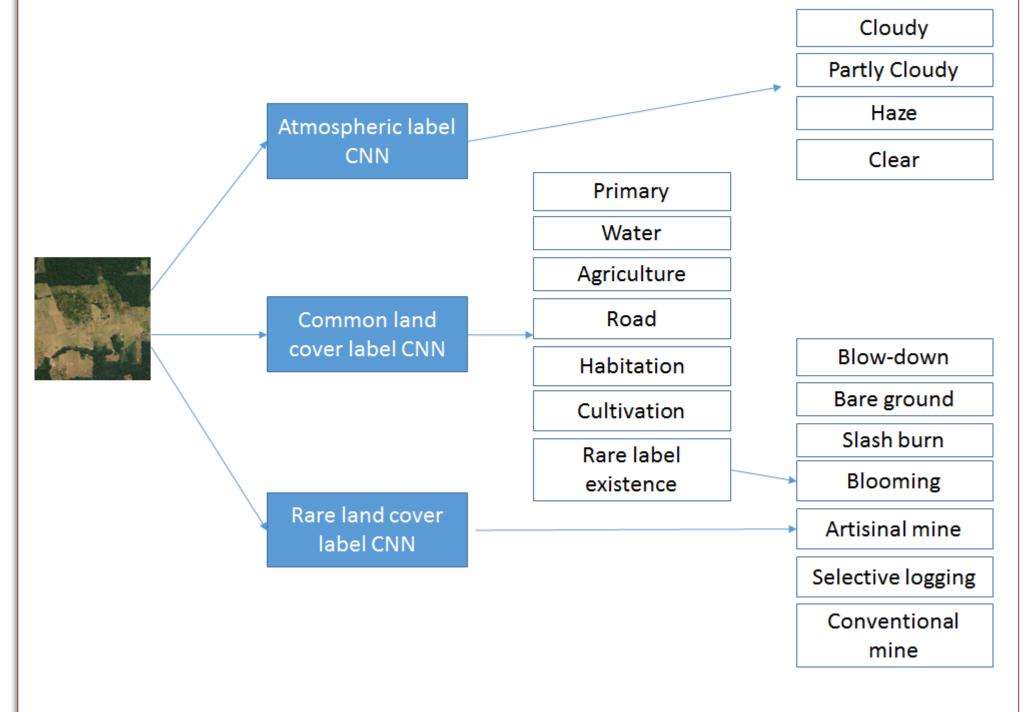
- 256x256 JPEG
- ~40K training images
- ∼60K test images
- Highly uneven class distribution
- Mutually exclusive weather classes

METHODS

Transfer Learning

- ImageNet models:
 - ResNet18 ■ InceptionV3
 - Xception
- Binary cross-entropy loss for each class.
- FC layers trained with Conv layers frozen.
- Conv layers fine tuned with low learning rate.

Pre-trained ImageNet model (convolutional layers)


Global Average Pooling

FC-1024

FC-17

Sigmoid

Hierarchical Model

Improving Performance

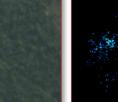
- Data augmentation: random rotation, horizontal and vertical flips, zoom etc.
- Class-specific thresholds
- Ensembling different models
- Higher resolution images $(32x32 \rightarrow 64x64 \rightarrow 96x96)$
- Learning rate schedule (for Hierarchical Model)

RESULTS

Ranked 11th among 372 contestants (as of 06/05/17)


Model	Input Size	Test F2 score
Fine-tuned ResNet18	256 X 256 X 3	0.92276
Fine-tuned InceptionV3	200 X 200 X 3	0.92398
Fine-tuned Xception	200 X 200 X 3	0.92471
Hierarchical model (1)	64 X 64 X 3	0.92323
Hierarchical model (2)	96 X 96 X 3	0.92457
Ensemble	N/A	0.93019

Image	True labels	Predicted labels
	agriculture clear habitation primary road	agriculture clear habitation primary road
	conventional_mine habitation partly_cloudy primary road	conventional_mine habitation partly_cloudy primary road
	clear primary water	clear primary water
	cultivation habitation partly_cloudy primary road	cultivation habitation road agriculture water primary partly_cloudy
	clear primary water	water primary <i>partly_cloudy</i> clear


Saliency Maps:

Partly cloudy

Hier. model performed well even for low res. images.

Road

CONCLUSIONS AND FUTURE WORK

- CNNs proved effective for this Kaggle challenge.
- Ensembling significantly improved the F2 score.
- Future work: utilize higher resolution images, train hierarchical model end-to-end.