
Lossy image compression
● Explosion in digital images requires increasingly 

more storage space
○ Example: 12 megapixel camera on iPhone X

■ Total of 36 (RGB) or 18 MB per image (YUV 
4:2:0)

■ Sharing a photo album with just 100 pictures 
takes at least 1.8 GB data to be transmitted

  

● Lossless compression gives only ~2:1 compression 
(on average)
○ Some loss must be tolerated

● Flaws of traditional lossy compressors, especially 
at low bit rates:
○ Staircase noise (aliasing) along curved edges
○ Blockiness
○ Posterization
○ Generation Loss

Methods

● When reconstruction has been completed to the describer’s 
satisfaction, the compression experiment is stopped

● The processed and bzip2-compressed text transcript is the 
compressed representation of the original image
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Human-centric compression
● Question: Can we create more efficient lossy 

compressors by preserving only what humans 
perceive as important?

● Goals:
○ A more human-centric approach to image 

compression
○ Use of the vast public repository of images 

already available on the Internet
● The human-centric approach:

○ Optimize for what humans care about by 
prioritizing high level semantic descriptions 
rather than arbitrary loss functions (RMSE, 
SSIM, etc.)

○ Leverage the efficiency of human language 
(rather than encoding and decoding pixels)

Human-Centric Compression:
What can lossy compression learn from humans? 
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Testing and Results
● Used WebP to lossily compress the original image to a size 

similar to the text-based representation
● Used Amazon Mechanical Turk to evaluate images

● Human compression can outperform traditional compression at 
very low bit rates

● Using semantically and structurally similar images from a large 
database can dramatically improve compression ratio

● Demonstrated room for growth in lossy compression
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Future work
● Human compression framework is useful as an exploratory tool, 

but not practical:
○ Use GANs to perform description and reconstruction1

○ Use neural networks to predict human scores2
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Figure: Typical lossy image compression framework


