

Human-Centric Compression: What can lossy compression learn from humans? Soham Mukherjee (Monta Vista), Sean Yang (St. Francis) and Ashu Bhown (Palo Alto) Shubham Chandak, Irena Fischer-Hwang, Kedar Tatwawadi and Tsachy Weissman (Stanford)

Lossy image compression

- Explosion in digital images requires increasingly more storage space
 - Example: 12 megapixel camera on iPhone X
 - Total of 36 (RGB) or 18 MB per image (YUV) 4:2:0)
 - Sharing a photo album with just 100 pictures takes at least 1.8 GB data to be transmitted

Figure: Typical lossy image compression framework

- Lossless compression gives only ~2:1 compression (on average)
- Some loss must be tolerated
- Flaws of traditional lossy compressors, especially at low bit rates:
 - Staircase noise (aliasing) along curved edges
 - Blockiness
 - Posterization
 - Generation Loss

Human-centric compression

- Question: Can we create more efficient lossy compressors by preserving only what humans perceive as important?
- Goals:
 - A more human-centric approach to image compression
 - Use of the vast public repository of images already available on the Internet
- The human-centric approach:
 - Optimize for what humans care about by prioritizing high level semantic descriptions rather than arbitrary loss functions (RMSE, SSIM, etc.)
 - Leverage the efficiency of human language (rather than encoding and decoding pixels)

Testing and Results

• Used WebP to lossily compress the original image to a size similar to the text-based representation • Used Amazon Mechanical Turk to evaluate images

	2N 22			21		277	77
	Original	Compressed chat	WebP size	Mean score		Median score	
;	size (KB)	size (KB)	(KB)	Human	WebP	Human	WebP
	1119	3.805	3.840	4.04	5.1	3	5
n	92	1.951	2.036	6.22	5.45	7	6
dge	3263	4.604	4.676	4.34	3.92	4	4
ver	2245	4.363	4.394	5.98	5.77	6	6
	1885	2.649	2.762	2.95	5.47	3	6
	4270	2.407	2.454	6.74	5.09	7	5
;	5256	3.107	3.144	6.28	4.48	7	4
an	1648	2.713	2.730	4.88	4.07	5	4
ion	3751	3.157	3.238	6.8	4.15	7	4
11	4205	6.613	6.674	4.41	4.85	4	5
ke	1505	4.077	4.088	5.08	4.82	5	5
	3445	1.948	2.024	6.85	3.62	7	3
ch	1914	0.869	0.922	8.25	3.46	9	3

• Human compression can outperform traditional compression at very low bit rates

• Using semantically and structurally similar images from a large database can dramatically improve compression ratio • Demonstrated room for growth in lossy compression

Future work

• Human compression framework is useful as an exploratory tool, but not practical:

 Use GANs to perform description and reconstruction¹ • Use neural networks to predict human scores²

References

Agustsson, Eirikur, et al. "Generative Adversarial Networks for Extreme Learned Image Compression." arXiv preprint arXiv:1804.02958 (2018).

2. Chinen, Troy, et al. "Towards A Semantic Perceptual Image Metric." 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018.

Bhown, Ashutosh, et al. "Humans are still the best lossy image compressors." arXiv preprint arXiv:1810.11137 (2018).