

# Efficient storage of and in DNA: genomic data compression & DNA based storage

Shubham Chandak

PhD '21, Electrical Engineering, Stanford University Currently Applied Scientist, S3, Amazon Web Services

\_

Biochemical Engineering and Biotechnology Department Seminar

IIT Delhi

Apr 28, 2022

#### Outline

- Introduction to genomic sequencing technologies
- Genomic data compression: SPRING
- Using DNA as a storage medium

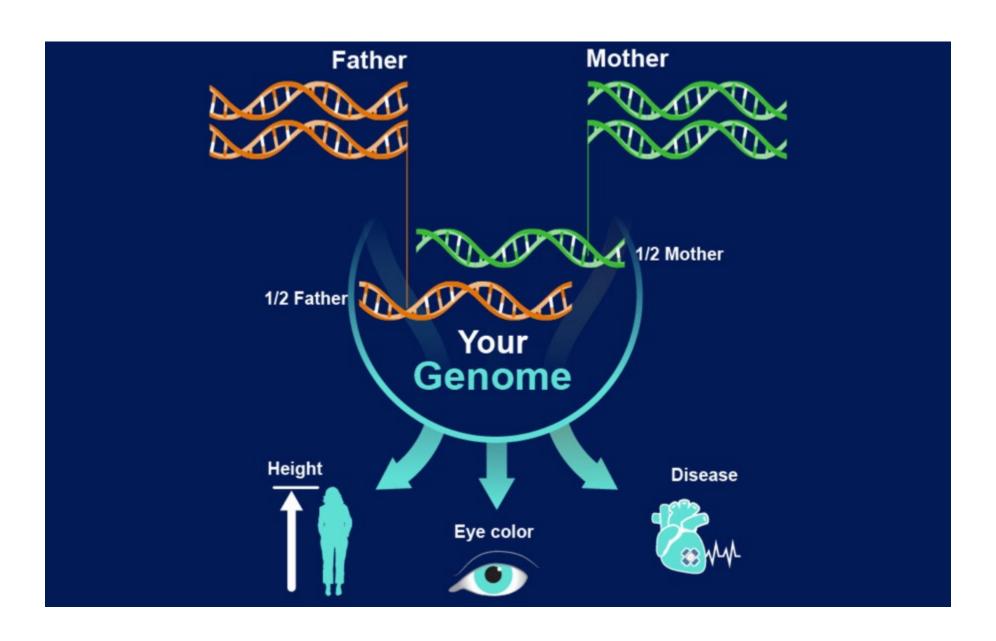
## Introduction to genomic sequencing technologies

What is the genome?

What is genome sequencing?

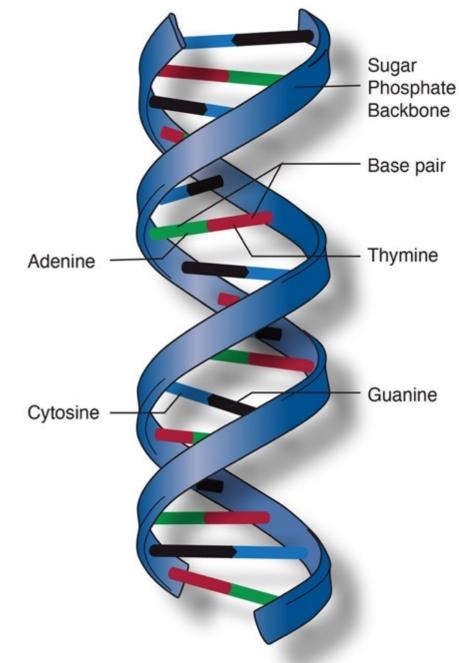
Why compression?

Raw data and downstream analysis

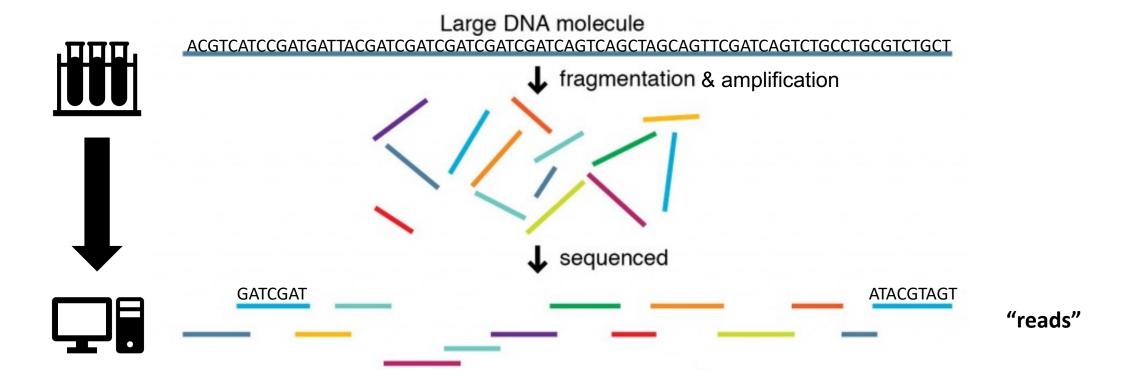


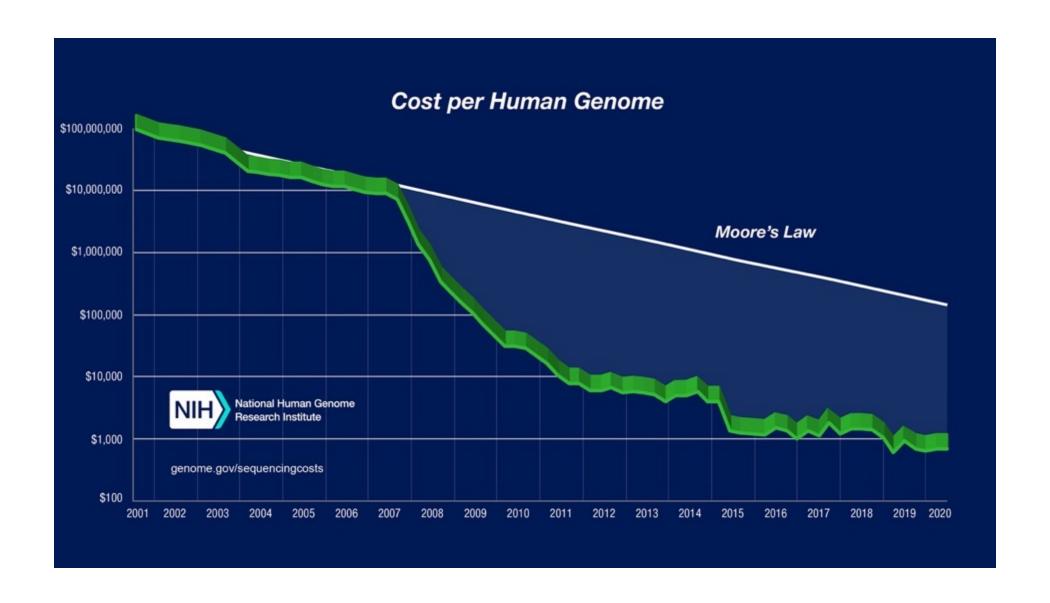
#### What is the genome?

- Sequence of DNA bases in {A, C, G, T}
- Two complementary strands
- For humans:
  - 3 billion bases (x2)
  - Across 23 (x2) chromosomes

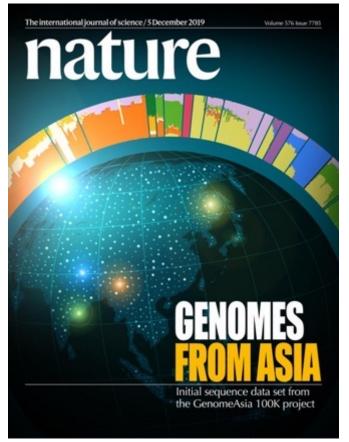


#### Genome sequencing













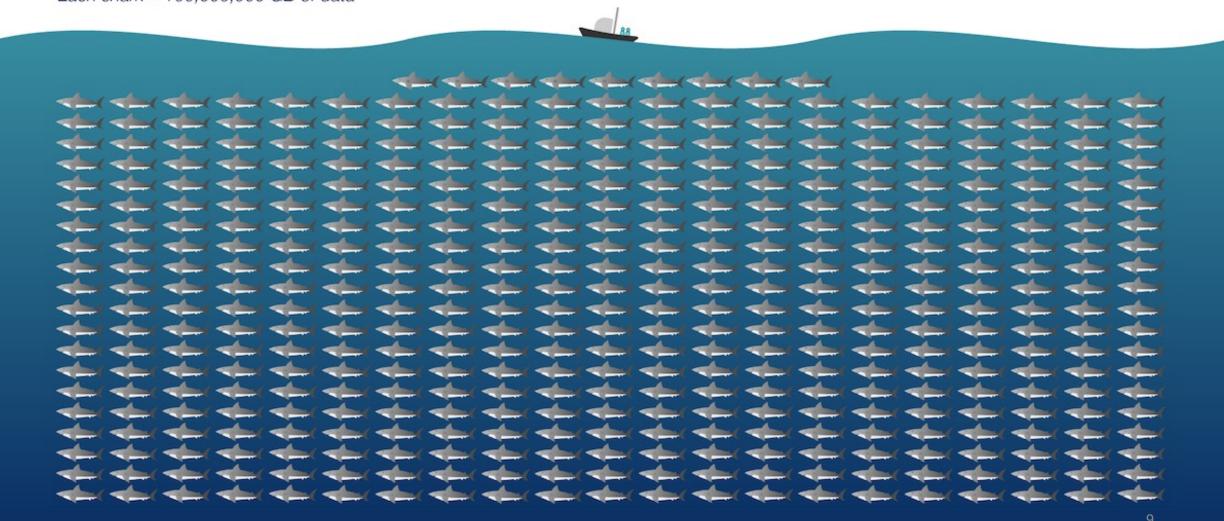
sequencing life for the future of life

500K human genomes ~1.5M eukaryote species

#### How big is 40 exabytes?

Genomics projects will generate 40 exabytes of data in the next decade.

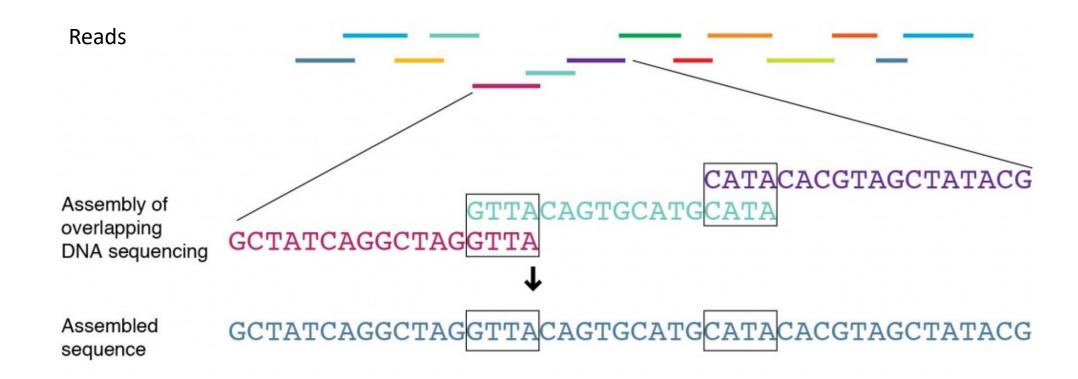
Each shark = 100,000,000 GB of data



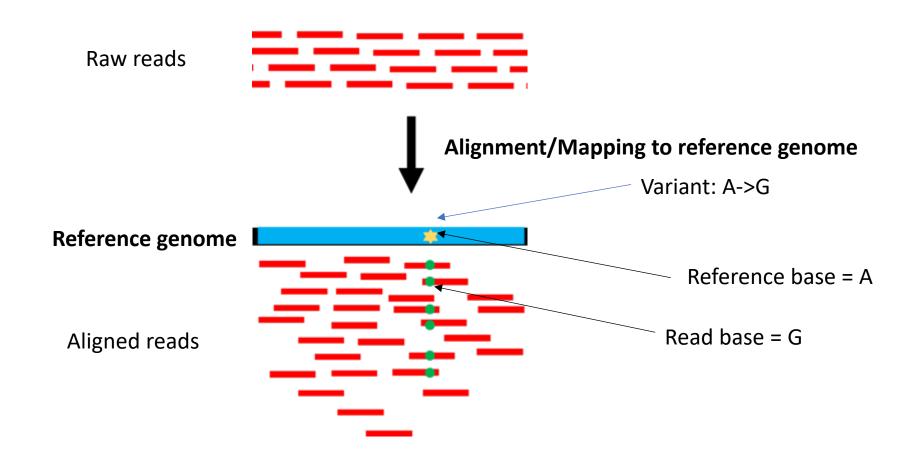
#### Sequencing & downstream analysis

- Aim: learn about the genome from the sequenced reads
- Two major analysis pipelines:
  - Assembly
  - Alignment + Variant Calling

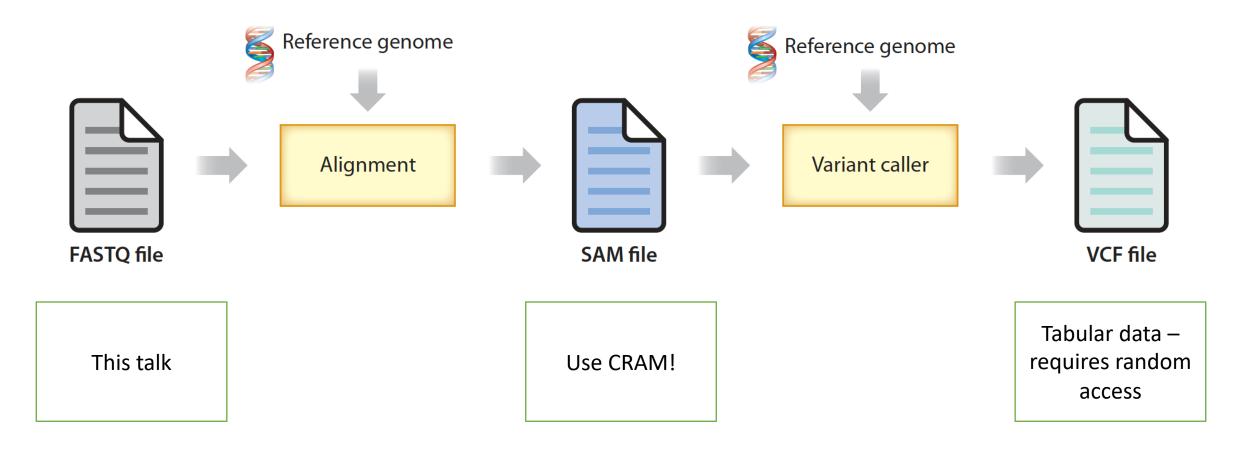
#### Genome assembly



#### Alignment and Variant Calling



### File formats in the pipeline



#### Sequencing & downstream analysis

- Aim: learn about the genome from the sequenced reads
- Two major analysis pipelines:
  - Assembly
  - Alignment + Variant Calling
- Several sequencing methods with different features
  - We focus on two leading technologies

#### Sequencing technologies



Illumina NextSeq 550

- High throughput
- Short reads
- Low error rate



Oxford Nanopore MinION

- Portable and real-time
- Long reads
- Native DNA & direct RNA sequencing

#### Outline

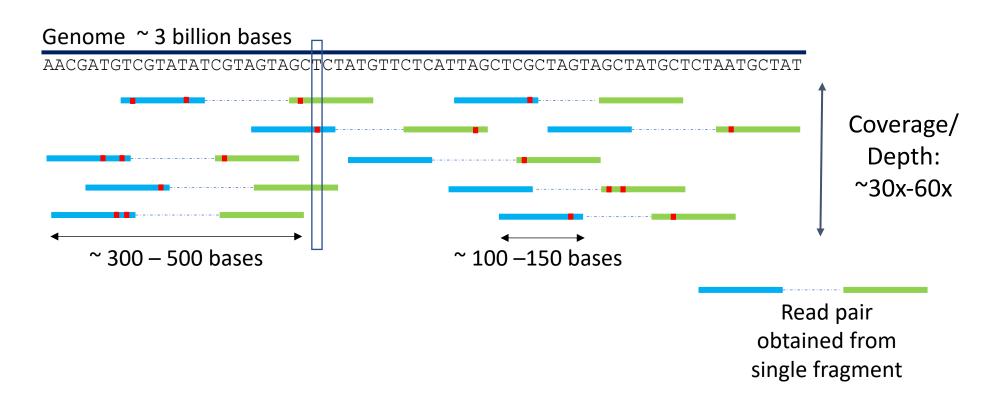
- Introduction to genomic sequencing technologies
- Genomic data compression: SPRING
- Using DNA as a storage medium

Chandak, Shubham, et al. "SPRING: a next-generation compressor for FASTQ data." *Bioinformatics* 35.15 (2019): 2674-2676.

Joint work with Kedar Tatwawadi, Idoia Ochoa, Mikel Hernaez, Tsachy Weissman

#### Paired-end genome sequencing

- Genome: long string of bases {A, C, G, T}
- Sequenced as noisy paired substrings (reads):



#### Why store raw reads?

- Pipelines improve with time need raw data for reanalysis
- For temporary storage or regulatory requirements
- When reference genome not available e.g., de novo assembly or metagenomics

#### FASTQ format

```
File 1
                                 Read
@ERR174324.1 HSQ1009 86:1:1101:1192:2116/1
ATTCNGTCACTTCTCACCAGGCCCCTCATTCAACACTGGGAATTAAAATTCGAC
Quality scores
                File 2
                             Read identifier
@ERR174324.2 HSQ1009 86:1:1101:1192:2116/2
We'll mostly focus on reads in this talk.
```

#### Read compression

For a typical 25x human dataset:

• Uncompressed: 79 GB (1 byte/base)

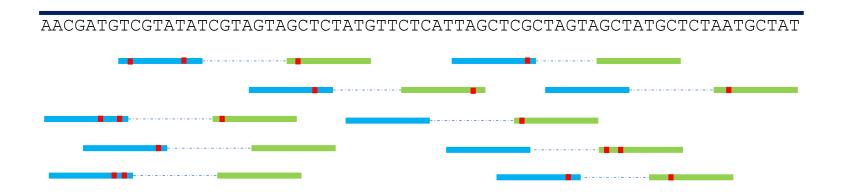
• Gzip: ~20 GB (2 bits/base) – still far from optimal

## Read compression results

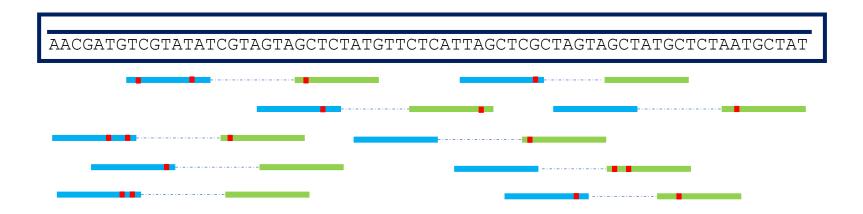
| Compressor   | 25x human |
|--------------|-----------|
| Uncompressed | 79 GB     |
| Gzip         | ~20 GB    |
| SPRING       | 3 GB      |

## Read compression results

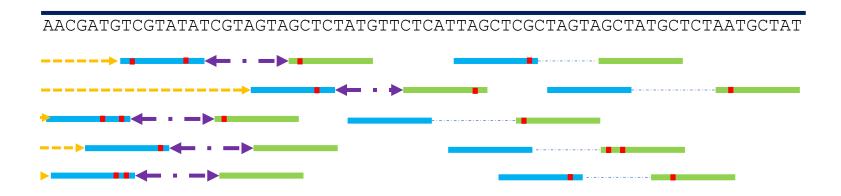
| Compressor   | 25x human | 100x human |
|--------------|-----------|------------|
| Uncompressed | 79 GB     | 319 GB     |
| Gzip         | ~20 GB    | ~80 GB     |
| SPRING       | 3 GB      | 10 GB      |



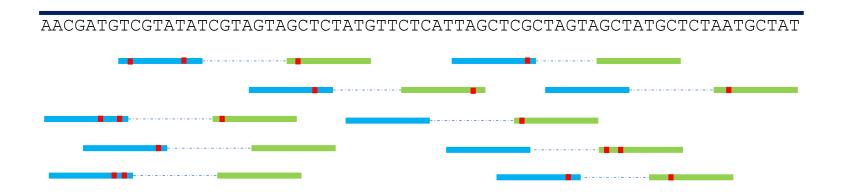
Storing reads equivalent to



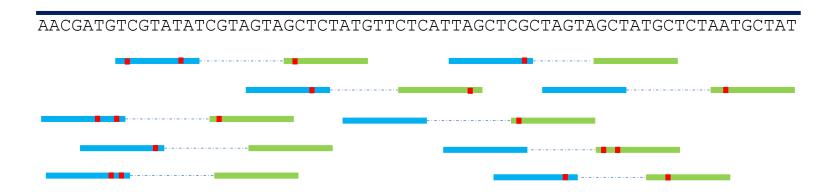
- Storing reads equivalent to
  - Store genome



- Storing reads equivalent to
  - Store genome
  - Store read positions in genome (+ gap between paired reads)



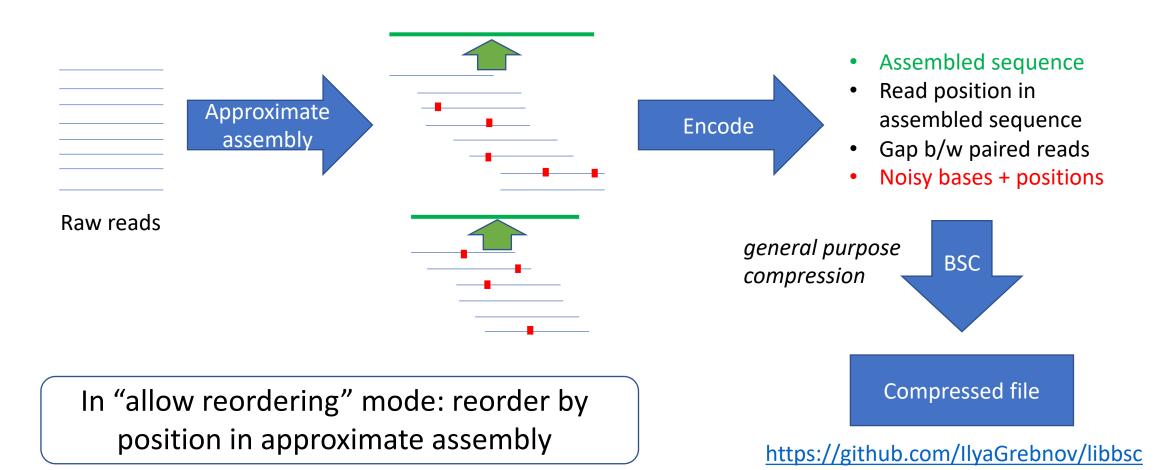
- Storing reads equivalent to
  - Store genome
  - Store read positions in genome (+ gap between paired reads)
  - Store noise in reads



- Storing reads equivalent to
  - Store genome
  - Store read positions in genome (+ gap between paired reads)
  - Store noise in reads
- Theoretical calculations show this outperforms previous compressors

- But... How to get the genome from the reads?
- Genome assembly too expensive big challenges:
  - resolve repeats
  - get very long pieces of genome from shorter assemblies
- Solution: Don't need perfect assembly for compression!

#### SPRING workflow



#### SPRING as a practical tool



- Easy to use with support for:
  - Lossless and lossy modes
  - Variable length reads, long reads, etc.
  - Compressed in blocks to allow partial/streaming decompression
  - Scalable to large datasets
  - Gzipped I/O
- GitHub: <a href="https://github.com/shubhamchandak94/SPRING/">https://github.com/shubhamchandak94/SPRING/</a>

#### Future directions

- Another paradigm: reference-based FASTQ compression
  - Illumina ORA/Enancio, Petagene
- More recent work on compression for long read data
  - Meng, Q., Chandak, S., Zhu, Y., & Weissman, T. (2021). NanoSpring: reference-free lossless compression of nanopore sequencing reads using an approximate assembly approach. *bioRxiv*.
  - Shubham Chandak, Kedar Tatwawadi, Srivatsan Sridhar, Tsachy Weissman, Impact of lossy compression of nanopore raw signal data on basecalling and consensus accuracy, Bioinformatics, Volume 36, Issue 22-23, 1 December 2020, Pages 5313–5321.

#### Outline

- Introduction to genomic sequencing technologies
- Genomic data compression: SPRING
- Using DNA as a storage medium

Lau, Billy T., **Chandak S.**, et al. "Magnetic DNA random access memory with nanopore readouts and exponentially-scaled combinatorial addressing." *bioRxiv* (2021).

- **S. Chandak et al.**; "Overcoming high nanopore basecaller error rates for DNA storage via basecaller-decoder integration and convolutional codes," *ICASSP 2020*.
- S. Chandak et al.; "Improved read/write cost tradeoff in DNA-based data storage using LDPC codes," Allerton 2019.

### Team and funding



Shubham Chandak



Joachim Neu



Jay Mardia



Billy Lau



Matt Kubit



Reyna Hulett



Peter Griffin



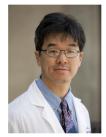
Sharmili Roy



Tsachy Weissman



Mary Wootters



Hanlee Ji

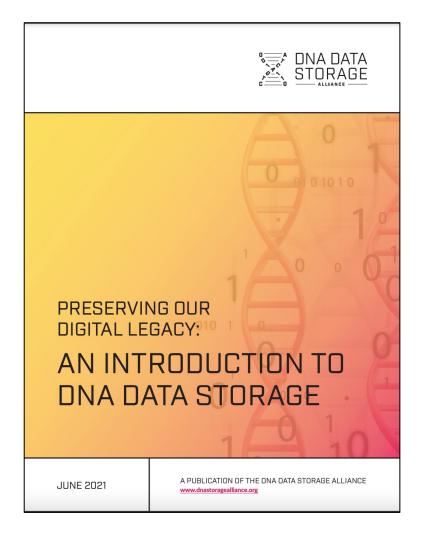


SemiSynBio: Highly scalable random access DNA data storage with nanopore-based reading

Beckman Center Innovative Technology Seed Grant

Scalable Long-Term DNA Storage with Error Correction and
Random-Access Retrieval







## Scientists claim big advance in using DNA to store data

By Paul Rincon Science editor, BBC News website

① 1 December 2021

#### **FOUNDERS**







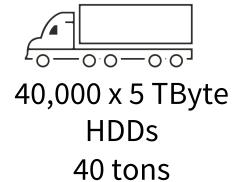
Western Digital.

Illumina Microsoft

**Twist Bioscience** 

**Western Digital** 

## Why DNA-based Storage?



200 Petabyte DNA
1 gram

Easy duplication

10's of years

1000's of years

#### **Building Blocks**

Ability to "read/sequence" the DNA from the solution.





Ability to "write/synthesize" artificial DNA (sequence of {A,C,G,T})



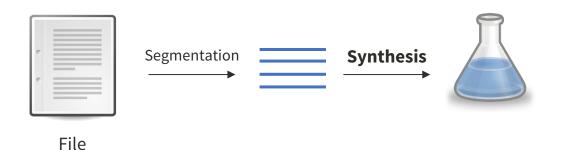
Agilent Technologies

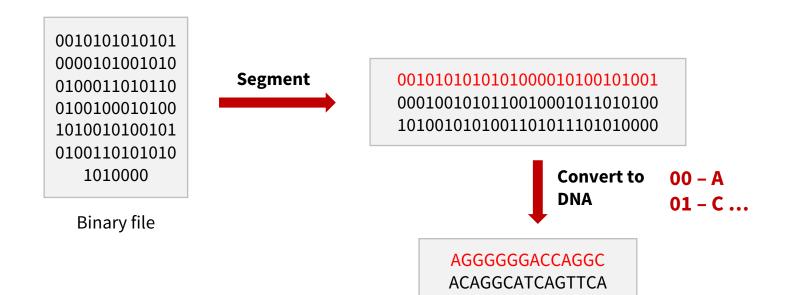
**Current ability:** short DNA oligo sequences (~150 length) at scale (Array Synthesis)



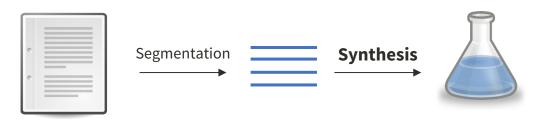
File

Can only synthesize short DNA oligo sequences ~150 bases



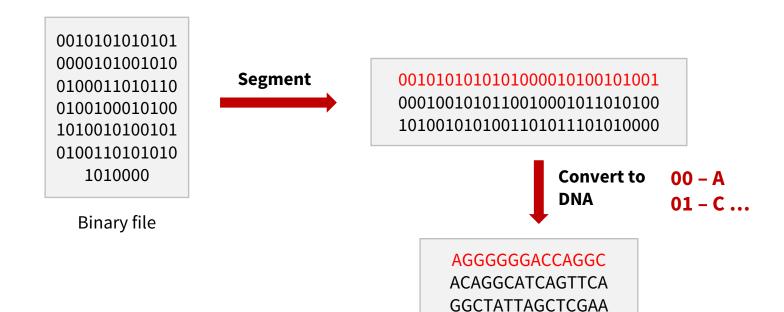


**GGCTATTAGCTCGAA** 



File

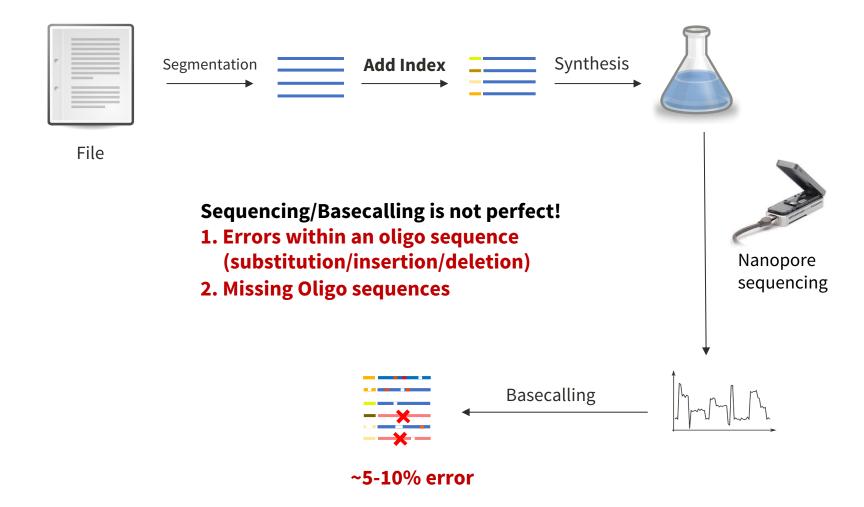
### Order of sequences lost in the solution!

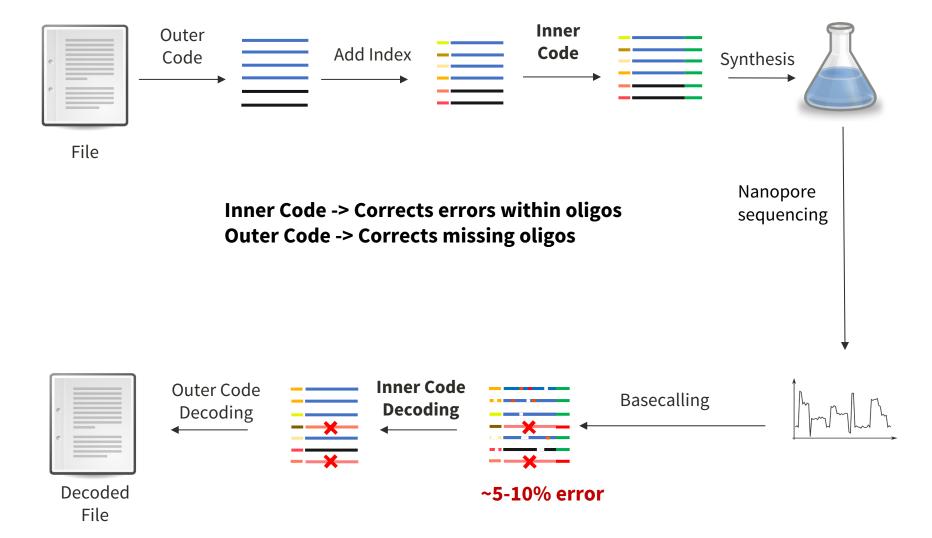




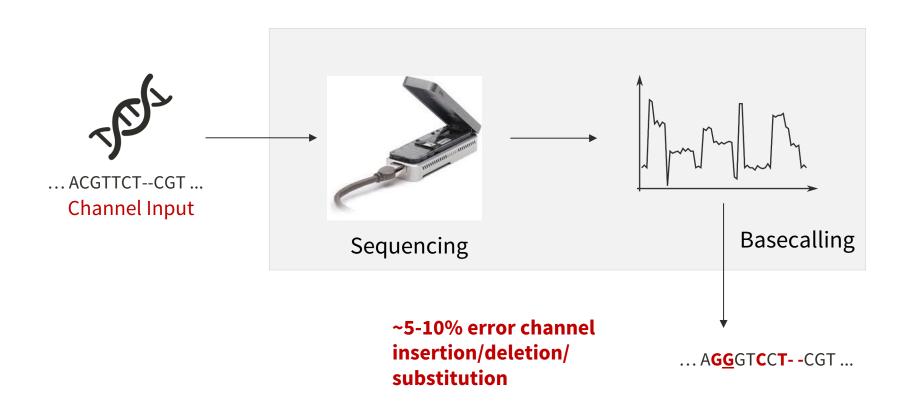
Order of sequences lost in the solution! – Add Index

Length of index in binary segment at least log<sub>2</sub> (number of segments)



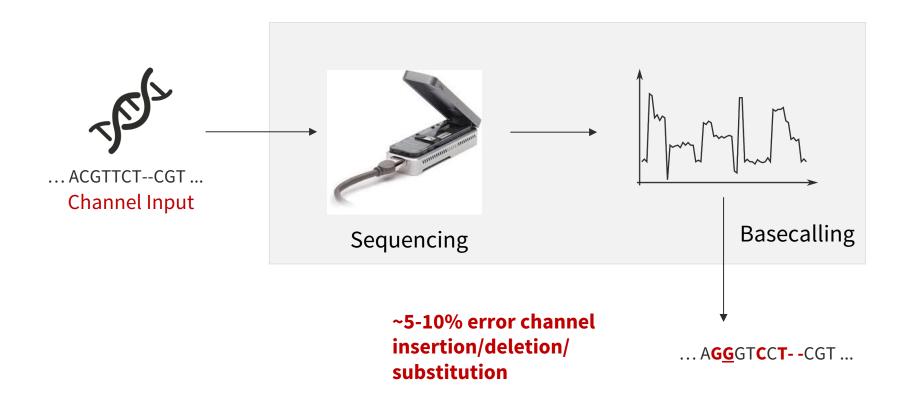


### Channel Model – Insertion/Deletion Channel



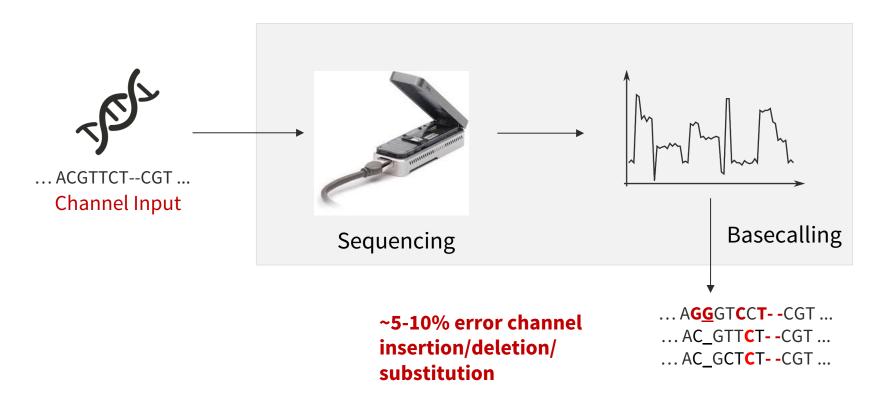
### Channel Model – Insertion/Deletion Channel

 Basecalling Error: No good practical error correction code for 5-10% Insertion/Deletions

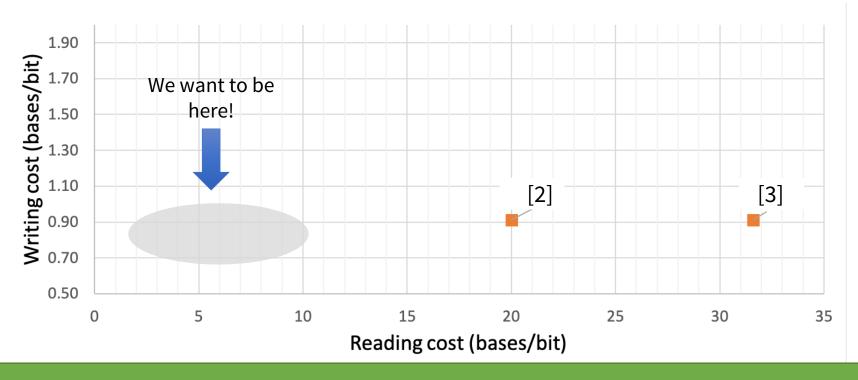


### Channel Model – Insertion/Deletion Channel

- Basecalling Error: No good practical error correction code for 5-10% Insertion/Deletions
- Common Idea: Sequence the input lot of times (~30-40x)
  - cluster *index*, and perform "averaging" to reduce the error



#### Previous Works

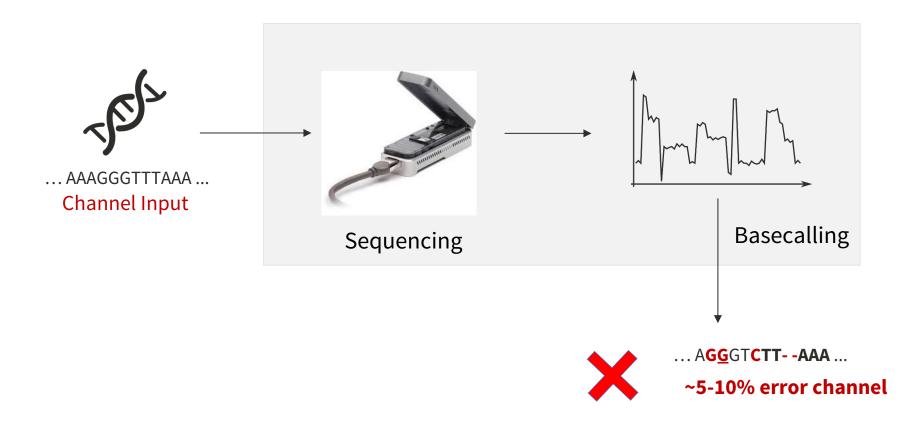


#### Tradeoff between reading and writing costs

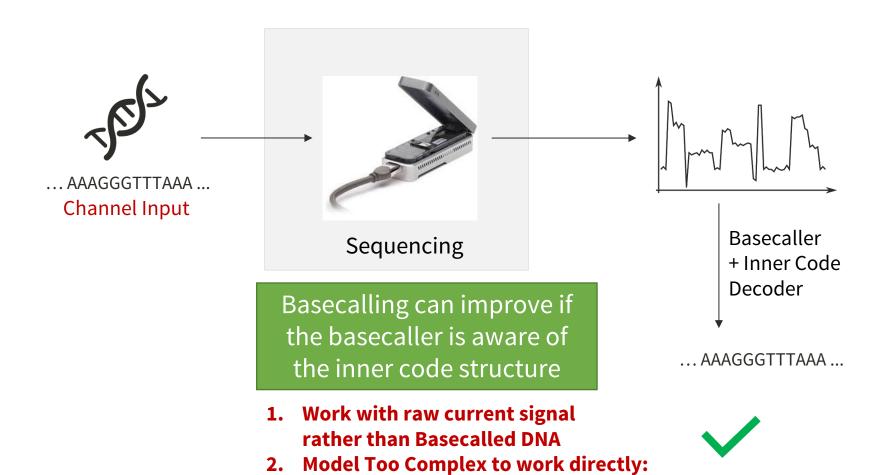
[2] L. Organick *et al.*, "Random access in large-scale DNA data storage," *Nature biotechnology*, vol. 36, no. 3, p. 242, 2018.

[3] Randolph Lopez et al., "DNA assembly for nanopore data storage readout," Nature communications, vol. 10, no. 1, pp. 2933, 2019.

### Nanopore Error Model

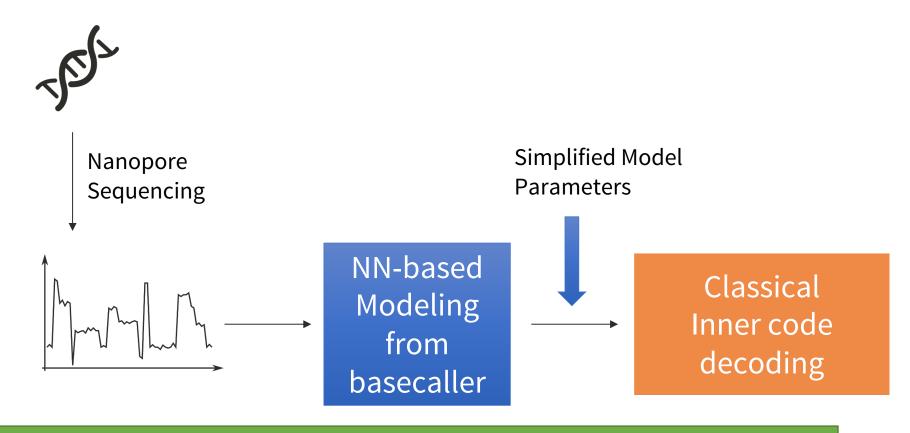


### Key Insight!



Use Machine Learning to simplify

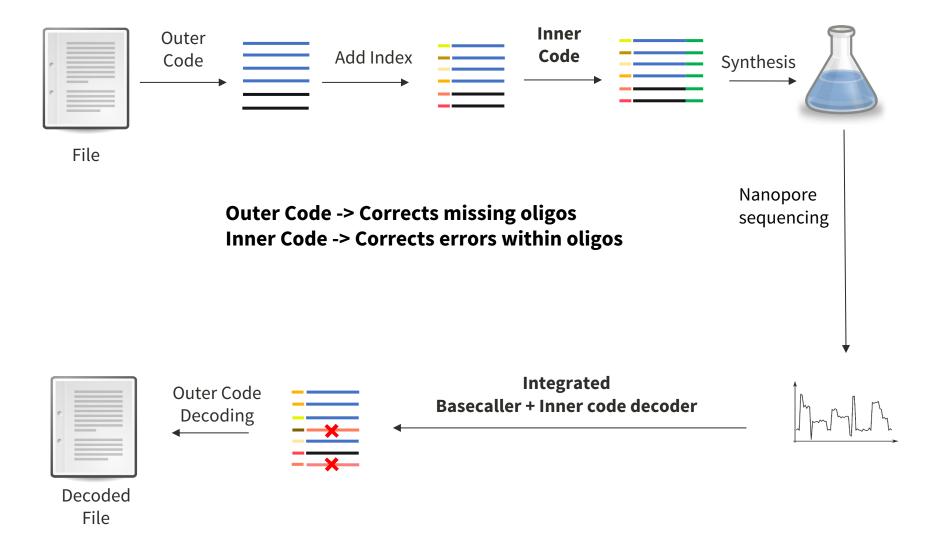
### Inner code decoding



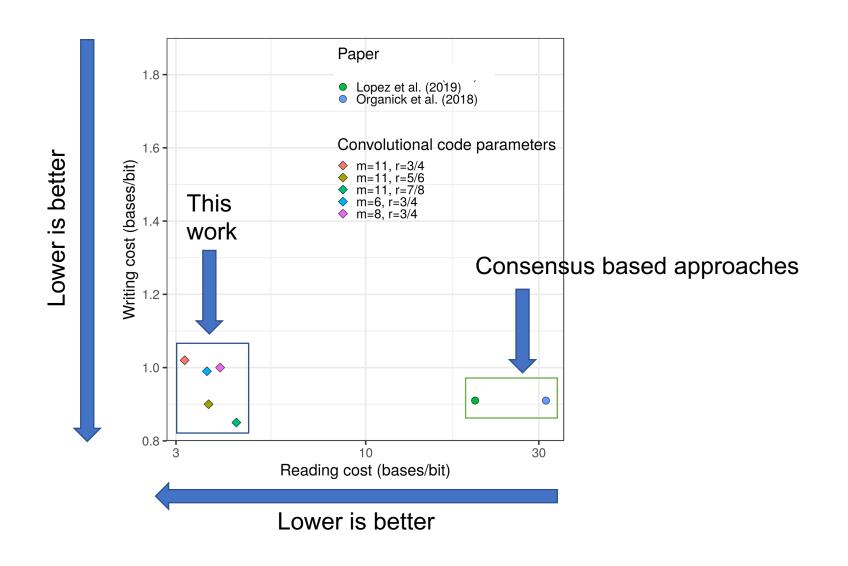
NN-based model simplifies the complex model into a simpler Markov model!

It repurposes the basecaller's NN model which is optimized based on large amounts of data.

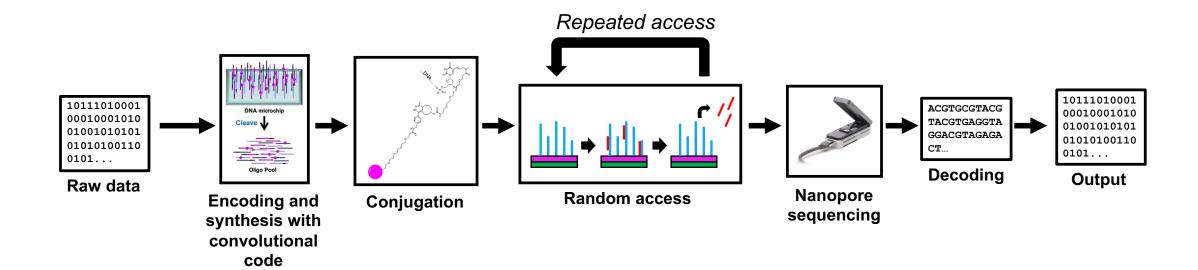
## Integrated Decoding System



### Results



### Overall approach



#### Future directions

- Automation of DNA data retrieval with liquid handling robots
- Possibility of real-time data decoding with nanopore sequencers
- Design cheaper, possibly more error prone synthesis platforms

# Thank you!