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Outline

• Introduction to genomic sequencing technologies

• Genomic data compression: SPRING

• Using DNA as a storage medium
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Introduction to genomic 
sequencing technologies
What is the genome?
What is genome sequencing?
Why compression?
Raw data and downstream analysis
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Image source: https://www.genome.gov/About-Genomics/Introduction-to-Genomics 4



What is the genome?

• Sequence of DNA bases in {A, C, G, T}

• Two complementary strands

• For humans:
• 3 billion bases (x2)

• Across 23 (x2) chromosomes

Image source: https://www.genome.gov/genetics-glossary/Double-Helix 5



Genome sequencing

6Image source: https://www.genengnews.com/uncategorized/first-nanopore-sequencing-of-human-genome/

“reads”

& amplification
ACGTCATCCGATGATTACGATCGATCGATCGATCGATCAGTCAGCTAGCAGTTCGATCAGTCTGCCTGCGTCTGCT

ATACGTAGTGATCGAT

https://www.genengnews.com/uncategorized/first-nanopore-sequencing-of-human-genome/
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500K human genomes
~1.5M eukaryote species8



Image source: https://www.genome.gov/about-genomics/fact-sheets/Genomic-Data-Science
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Sequencing & downstream analysis

• Aim: learn about the genome from the sequenced reads

• Two major analysis pipelines:
• Assembly

• Alignment + Variant Calling
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Genome assembly

Image source: https://knowgenetics.org/whole-genome-sequencing/

Reads



Alignment and Variant Calling

13
Image source: https://training.galaxyproject.org/archive/2019-02-07/topics/proteomics/tutorials/proteogenomics-

dbcreation/tutorial.html/

Alignment/Mapping to reference genome

Reference genome

Variant: A->G

Raw reads

Aligned reads

Reference base = A

Read base = G



File formats in the pipeline
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Image source: https://www.annualreviews.org/doi/pdf/10.1146/annurev-biodatasci-072018-021229

This talk Use CRAM!
Tabular data –

requires random 
access



Sequencing & downstream analysis

• Aim: learn about the genome from the sequenced reads

• Two major analysis pipelines:
• Assembly

• Alignment + Variant Calling

• Several sequencing methods with different features
• We focus on two leading technologies
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Sequencing technologies
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Image source:
https://www.genengnews.com/uncategorized/first-nanopore-sequencing-of-human-genome/
https://www.illumina.com/systems/sequencing-platforms/nextseq.html

Illumina NextSeq 550
Oxford Nanopore MinION

• High throughput
• Short reads
• Low error rate

• Portable and real-time
• Long reads
• Native DNA & direct RNA sequencing

https://www.genengnews.com/uncategorized/first-nanopore-sequencing-of-human-genome/
https://www.illumina.com/systems/sequencing-platforms/nextseq.html
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• Introduction to genomic sequencing technologies

• Genomic data compression: SPRING

• Using DNA as a storage medium
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Chandak, Shubham, et al. "SPRING: a next-generation compressor for FASTQ 
data." Bioinformatics 35.15 (2019): 2674-2676.

Joint work with Kedar Tatwawadi, Idoia Ochoa, Mikel Hernaez, Tsachy Weissman



Paired-end genome sequencing

• Genome: long string of bases {A, C, G, T}

• Sequenced as noisy paired substrings (reads):

~ 300 – 500 bases ~ 100 –150 bases

Genome  ~ 3 billion bases
AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

Coverage/
Depth:

~30x-60x
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Read pair 
obtained from 

single fragment



Why store raw reads?

• Pipelines improve with time - need raw data for reanalysis

• For temporary storage or regulatory requirements

• When reference genome not available – e.g., de novo assembly or 
metagenomics
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FASTQ format

We’ll mostly focus on reads in this talk.
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Read compression

• For a typical 25x human dataset:
• Uncompressed:    79 GB (1 byte/base)

• Gzip: ~20 GB (2 bits/base) – still far from optimal
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Read compression results

Compressor 25x human 

Uncompressed 79 GB

Gzip ~20 GB

SPRING 3 GB
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Read compression results

Compressor 25x human 100x human

Uncompressed 79 GB 319 GB

Gzip ~20 GB ~80 GB

SPRING 3 GB 10 GB
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Key idea 

• Storing reads equivalent to

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

25



Key idea 

• Storing reads equivalent to
• Store genome

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT
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Key idea 

• Storing reads equivalent to
• Store genome

• Store read positions in genome (+ gap between paired reads)

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT
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Key idea 

• Storing reads equivalent to
• Store genome

• Store read positions in genome (+ gap between paired reads)

• Store noise in reads

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT
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Key idea 

• Storing reads equivalent to
• Store genome

• Store read positions in genome (+ gap between paired reads)

• Store noise in reads

• Theoretical calculations show this outperforms previous compressors 

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT
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Key idea 

• But... How to get the genome from the reads?

• Genome assembly too expensive - big challenges:
• resolve repeats

• get very long pieces of genome from shorter assemblies

• Solution: Don’t need perfect assembly for compression!
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SPRING workflow

Approximate 
assembly

Raw reads

Encode

• Assembled sequence
• Read position in 

assembled sequence
• Gap b/w paired reads
• Noisy bases + positions

BSC

Compressed file
In “allow reordering” mode: reorder by 

position in approximate assembly https://github.com/IlyaGrebnov/libbsc
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general purpose 
compression 

https://github.com/IlyaGrebnov/libbsc


SPRING as a practical tool

• Easy to use with support for:
• Lossless and lossy modes

• Variable length reads, long reads, etc.

• Compressed in blocks to allow partial/streaming decompression

• Scalable to large datasets

• Gzipped I/O

• GitHub: https://github.com/shubhamchandak94/SPRING/

195 GB
25x human 

FASTQ

2 hours
32 GB RAM
8 threads

7 GB
SPRING
Archive 

vs. gzip: 36 GB

26 minutes
6 GB RAM
8 threads

Original
FASTQ
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https://github.com/shubhamchandak94/SPRING/


Future directions

33

• Another paradigm: reference-based FASTQ compression

• Illumina ORA/Enancio, Petagene

• More recent work on compression for long read data

• Meng, Q., Chandak, S., Zhu, Y., & Weissman, T. (2021). NanoSpring: reference-free lossless 
compression of nanopore sequencing reads using an approximate assembly 
approach. bioRxiv.

• Shubham Chandak, Kedar Tatwawadi, Srivatsan Sridhar, Tsachy Weissman, Impact of lossy 
compression of nanopore raw signal data on basecalling and consensus accuracy, 
Bioinformatics, Volume 36, Issue 22-23, 1 December 2020, Pages 5313–5321.
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Lau, Billy T., Chandak S., et al. "Magnetic DNA random access memory with nanopore readouts and exponentially-scaled 

combinatorial addressing." bioRxiv (2021).

S. Chandak et al.; “Overcoming high nanopore basecaller error rates for DNA storage via basecaller-decoder integration and 

convolutional codes,” ICASSP 2020.

S. Chandak et al.; “Improved read/write cost tradeoff in DNA-based data storage using LDPC codes,” Allerton 2019.
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Why DNA-based Storage?

200 
Petabyte40,000 x 5 TByte

HDDs
40 tons

10’s of years

DNA
1 gram

1000’s of years

Easy duplication



Building Blocks

§ Ability to “read/sequence” the DNA from the solution. 

§ Ability to “write/synthesize” artificial DNA (sequence of {A,C,G,T})

Current ability: short DNA oligo sequences (~150 length) at scale
(Array Synthesis)
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Typical DNA Storage System

43

File

Can only synthesize short DNA 
oligo sequences ~150 bases



Typical DNA Storage System
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0010101010101
0000101001010
0100011010110
0100100010100
1010010100101
0100110101010

1010000

Binary file

0010101010101000010100101001
0001001010110010001011010100
1010010101001101011101010000

AGGGGGGACCAGGC
ACAGGCATCAGTTCA
GGCTATTAGCTCGAA

Segmentation Synthesis

File

Segment

Convert to 
DNA

00 – A
01 – C …



Typical DNA Storage System
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0010101010101
0000101001010
0100011010110
0100100010100
1010010100101
0100110101010

1010000

Binary file

0010101010101000010100101001
0001001010110010001011010100
1010010101001101011101010000

AGGGGGGACCAGGC
ACAGGCATCAGTTCA
GGCTATTAGCTCGAA

Order of sequences lost 
in the solution! 

Segmentation Synthesis

File

Segment

Convert to 
DNA

00 – A
01 – C …



Typical DNA Storage System
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Segmentation

File

Add Index

Order of sequences lost in the 
solution! – Add Index

Synthesis

000010101010101000010100101001
000101001010010010001010010100
001010010101001001010101010000

Length of index in binary segment at least log2(number of segments)



Typical DNA Storage System

47

Segmentation

File

Add Index Synthesis

Nanopore 
sequencing

Basecalling

~5-10% error

Sequencing/Basecalling is not perfect!
1. Errors within an oligo sequence 

(substitution/insertion/deletion) 
2. Missing Oligo sequences



Typical DNA Storage System
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File

Add Index Synthesis

Nanopore 
sequencing

Basecalling

Outer
Code

~5-10% error

Inner Code
Decoding

Decoded 
File

Outer Code
Decoding

Inner
Code

Inner Code -> Corrects errors within oligos
Outer Code -> Corrects missing oligos



Channel Model – Insertion/Deletion Channel

49

… AGGGTCCT- -CGT ...

Basecalling
Channel Input

… ACGTTCT--CGT ...

~5-10% error channel
insertion/deletion/
substitution

Sequencing
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… AGGGTCCT- -CGT ...

Basecalling
Channel Input

… ACGTTCT--CGT ...

~5-10% error channel
insertion/deletion/
substitution

Sequencing

Channel Model – Insertion/Deletion Channel
§ Basecalling Error: No good practical error correction code for 5-10% 

Insertion/Deletions



… AGGGTCCT- -CGT ...
… AC_GTTCT- -CGT ...
… AC_GCTCT- -CGT ...

Basecalling
Channel Input

~5-10% error channel
insertion/deletion/
substitution

Sequencing

§ Basecalling Error: No good practical error correction code for 5-10% 
Insertion/Deletions

§ Common Idea: Sequence the input lot of times (~30-40x)
- cluster index, and perform “averaging” to reduce the error

… ACGTTCT--CGT ...
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Channel Model – Insertion/Deletion Channel



Previous Works
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[2] L. Organick et al., “Random access in large-scale DNA data storage," 
Nature biotechnology, vol. 36, no. 3, p. 242, 2018.

[3] Randolph Lopez et al., “DNA assembly for nanopore data storage readout,”
Nature communications, vol. 10, no. 1, pp. 2933, 2019.
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We want to be 
here!

Tradeoff between reading and writing costs



Nanopore Error Model
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Basecalling

~5-10% error channel

Sequencing
Channel Input

… AGGGTCTT- -AAA ...

… AAAGGGTTTAAA ...



Key Insight!
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Channel Input

Sequencing Basecaller
+ Inner Code 
Decoder

… AAAGGGTTTAAA ...

… AAAGGGTTTAAA ...

Basecalling can improve if 
the basecaller is aware of 
the inner code structure

1. Work with raw current signal 
rather than Basecalled DNA 

2. Model Too Complex to work directly: 
Use Machine Learning to simplify



Inner code decoding
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NN-based 
Modeling

from 
basecaller

Classical 
Inner code 
decoding

NN-based model simplifies the complex model into a simpler Markov 
model! 

It repurposes the basecaller’s NN model which is optimized based on large 
amounts of data.

Simplified Model
Parameters

Nanopore 
Sequencing



Integrated Decoding System
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File

Add Index Synthesis

Nanopore 
sequencing

Outer
Code

Decoded 
File

Outer Code
Decoding

Inner
Code

Outer Code -> Corrects missing oligos
Inner Code -> Corrects errors within oligos

Integrated 
Basecaller + Inner code decoder



Results
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This 
work

Lower is better

Lo
w

er
 is

 b
et

te
r

Consensus based approaches



Overall approach

10111010001
00010001010
01001010101
01010100110
0101...

Raw data
Encoding and 
synthesis with 
convolutional 

code

Nanopore
sequencing

10111010001
00010001010
01001010101
01010100110
0101...

Output
Conjugation Random access

ACGTGCGTACG
TACGTGAGGTA
GGACGTAGAGA
CT…

Decoding

Repeated access



Future directions

• Automation of DNA data retrieval with liquid handling robots

• Possibility of real-time data decoding with nanopore sequencers 

• Design cheaper, possibly more error prone synthesis platforms



Thank you!
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