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Outline

* Introduction to genomic sequencing technologies



Introduction to genomic
seguencing technologies

What is the genome?

What is genome sequencing?

Why compression?

Raw data and downstream analysis
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What is the genome?

Base pair

* Sequence of DNA bases in {A, C, G, T}

* Two complementary strands R Thymine

e For humans:
* 3 billion bases (x2)

e Across 23 (x2) chromosomes Guanine

Cytosine

Image source: https://www.genome.gov/genetics-glossary/Double-Helix



Genome sequencing

Large DNA molecule

w‘ ¢ fragmentation & amplification

J sequenced

GATCGAT = ATACGTAGT

“reads”

-

Image source: https://www.genengnews.com/uncategorized/first-nanopore-sequencing-of-human-genome/



https://www.genengnews.com/uncategorized/first-nanopore-sequencing-of-human-genome/

Cost per Human Genome
$100,000,000

$10,000,000

Moore’s Law
$1,000,000

$100,000

$10,000

National Human Genome
Research Institute

genome.gov/sequencingcosts

$100
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020




nature

_-.‘..:‘.... . Sele
nitial sequence data set from
the GenomeAsia 100K project

7*BIOGENOME
- PROJECT

sequencing life for the future of life

500K human genomes ~1.5M eukaryote species



How big is 40 exabytes?
Genomics projects will generate 40 exabytes of data in the next decade.
Each shark = 100,000,000 GB of data
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Image source: https://www.genome.gov/about-genomics/fact-sheets/Genomic-Data-Science



Sequencing & downstream analysis

* Aim: learn about the genome from the sequenced reads

* Two major analysis pipelines:
* Assembly
* Alignment + Variant Calling
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Genome assembly

Reads —_— — —
CATACACGTAGCTATACG
Qj:ﬁ;“p%;f GTTACAGTGCATGICATA
DNA sequencing GCTATCAGGCTAGGTTA
J
::gsmzd GCTATCAGGCTAGGTTACAGTGCATGCATACACGTAGCTATACG

Image source: https://knowgenetics.org/whole-genome-sequencing/



Alignment and Variant Calling

Raw reads

Alignment/Mapping to reference genome

/ Variant: A->G
Reference genome _K
e— — Reference base = A
I ;\
[E— o v —

Aligned reads — e — Read base =G

Image source: https://training.galaxyproject.org/archive/2019-02-07/topics/proteomics/tutorials/proteogenomics-
dbcreation/tutorial.html/
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File formats in the pipeline

AN

FASTQ file

% Reference genome

Alignment

This talk

AN

SAM file

g Reference genome

Variant caller

Use CRAM!

Image source: https://www.annualreviews.org/doi/pdf/10.1146/annurev-biodatasci-072018-021229

VCF file

Tabular data —
requires random
access
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Sequencing & downstream analysis

* Aim: learn about the genome from the sequenced reads

* Two major analysis pipelines:
e Assembly
e Alignment + Variant Calling

* Several sequencing methods with different features
* We focus on two leading technologies
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Sequencing technologies

Oxford Nanopore MinION

lllumina NextSeq 550

e High throughput * Portable and real-time
* Short reads * Longreads
* Low error rate * Native DNA & direct RNA sequencing

Image source:
https://www.genengnews.com/uncategorized/first-nanopore-sequencing-of-human-genome/
https://www.illumina.com/systems/sequencing-platforms/nextseq.html
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https://www.genengnews.com/uncategorized/first-nanopore-sequencing-of-human-genome/
https://www.illumina.com/systems/sequencing-platforms/nextseq.html

Outline

 Genomic data compression: SPRING

Chandak, Shubham, et al. "SPRING: a next-generation compressor for FASTQ
data." Bioinformatics 35.15 (2019): 2674-2676.

Joint work with Kedar Tatwawadi, Idoia Ochoa, Mikel Hernaez, Tsachy Weissman
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Paired-end genome sequencing

 Genome: long string of bases {A, C, G, T}

e Sequenced as noisy paired substrings (reads):

Genome ~ 3 billion bases -

AACGATGTCGTATATCGTAGTAGCIICTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

A
v

~ 300 - 500 bases

~ 100 —150 bases

1
Coverage/
Depth:
~30x-60x

Read pair
obtained from
single fragment
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Why store raw reads?

* Pipelines improve with time - need raw data for reanalysis
* For temporary storage or regulatory requirements

* When reference genome not available — e.g., de novo assembly or
metagenomics



FASTQ format

File 1 Read

@ERR174324.1 HSQ1009_86:1:1101:1192:2116/1
ATTCNGTCACTTCTCACCAGGCCCCTCATTCAACACTGGGAATTAAAATTCGAC. ..

+
CCCF#2ADHHHHHJJJIJJJJIJJIJIIJIIIGIJIIIIIIIIIIIITIIIIGIIT. ..

Quality scores

File 2 i ifi
/ Read identifier

@ERR174324.2 HSQ1009_86:1:1101:1192:2116/2
CAGANAGAGACTCTGTCTCAAAAAAACAAACAAACAAACAAACAAAAAGTCTTA. ..

+
CCCF#2ADHFHHHJIJJJJJJJJJJIIJIIJIIJIIJIIJIIJIJHIIIIIIIITIIIIIIT. ..

We’ll mostly focus on reads in this talk.



Read compression

* For a typical 25x human dataset:
 Uncompressed: 79 GB (1 byte/base)
e Gzip: ~20 GB (2 bits/base) — still far from optimal



Read compression results

Uncompressed 79 GB

Gzip ~20 GB

SPRING 3 GB
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Read compression results

Uncompressed 79 GB 319 GB

Gzip ~20 GB ~80 GB

SPRING 3 GB 10 GB
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Key idea

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

 Storing reads equivalent to

25



Key idea

| AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

 Storing reads equivalent to
* Store genome
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Key idea

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

S R - — -
———— > ] I, - - ]
———— = =50 — -
———— — > — oo ]
e e 1 == —— e ]

 Storing reads equivalent to
* Store genome
(+ gap between paired reads)
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Key idea

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

 Storing reads equivalent to
* Store genome
 Store read positions in genome (+ gap between paired reads)
e Store noise in reads
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Key idea

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

 Storing reads equivalent to
* Store genome
 Store read positions in genome (+ gap between paired reads)
* Store noise in reads

* Theoretical calculations show this outperforms previous compressors
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Key idea

e But... How to get the genome from the reads?

* Genome assembly too expensive - big challenges:
* resolve repeats
» get very long pieces of genome from shorter assemblies

 Solution: Don’t need perfect assembly for compression!



SPRING workflow

- * Assembled sequence
_ * Read position in
Approximate . assembled sequence
assembl . « Gap b/w paired reads
e * Noisy bases + positions
Raw reads .
. general purpose
. compression

In “allow reordering” mode: reorder by Cempesseel i

position in approximate assembly https://github.com/llyaGrebnov/libbsc
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https://github.com/IlyaGrebnov/libbsc

SPRING as a practical tool

7 GB

195 GB 2 hours SPRING 26 minutes

6 GB RAM
8 threads

25x human 32 GB RAM Archive
FASTQ 8 threads vs. gzip: 36 GB

* Easy to use with support for:
* Lossless and lossy modes
* Variable length reads, long reads, etc.
* Compressed in blocks to allow partial/streaming decompression
* Scalable to large datasets
e Gzipped 1/O

e GitHub: https://github.com/shubhamchandak94/SPRING/

Original

FASTQ

32


https://github.com/shubhamchandak94/SPRING/

Future directions

* Another paradigm: reference-based FASTQ compression
* [llumina ORA/Enancio, Petagene

* More recent work on compression for long read data

* Meng, Q., Chandak, S., Zhu, Y., & Weissman, T. (2021). NanoSpring: reference-free lossless
compression of nanopore sequencing reads using an approximate assembly
approach. bioRxiv.

e Shubham Chandak, Kedar Tatwawadi, Srivatsan Sridhar, Tsachy Weissman, Impact of lossy
compression of nanopore raw signal data on basecalling and consensus accuracy,
Bioinformatics, Volume 36, Issue 22-23, 1 December 2020, Pages 5313-5321.



Outline

* Using DNA as a storage medium

Lau, Billy T., Chandak S., et al. "Magnetic DNA random access memory with nanopore readouts and exponentially-scaled

combinatorial addressing." bioRxiv (2021).

S. Chandak et al.; “Overcoming high nanopore basecaller error rates for DNA storage via basecaller-decoder integration and
convolutional codes,” ICASSP 2020.

S. Chandak et al.; “Improved read/write cost tradeoff in DNA-based data storage using LDPC codes,” Allerton 2019.
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Team and funding
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Why DNA-based Storage?

/e

‘t0—o00—o0 0!
40,000 x 5 TByte
HDDs
40 tons

10’s of years

200
Petabyte

—
DNA i
1 gram Easy duplication
1000’s of years



Building Blocks

- Ability to “read/sequence” the DNA from the solution.
‘Q{
{) NANOPORE |

. Ability to “write/synthesize” artificial DNA (sequence of {A,C,G,T})

TWI1ST (ustomArray | () senscript Agilent Technologies

Current ability: short DNA oligo sequences (~150 length) at scale
(Array Synthesis)

42



Typical DNA Storage System

File

Can only synthesize short DNA
oligo sequences ~150 bases



Typical DNA Storage System

Segmentation —___—— Synthesis
File
0010101010101
0000101001010
0100011010110 Segment 0010101010101000010100101001
0100100010100 — 0001001010110010001011010100
1010010100101 1010010101001101011101010000
0100110101010
1010000 Convertto (Q0-A
DNA 01 - C xXX)
Binary file
AGGGGGGACCAGGC
ACAGGCATCAGTTCA

GGCTATTAGCTCGAA



Typical DNA Storage System

Segmentation _—_—____—— Synthesis

»
» »

File
Order of sequences lost
in the solution!
0010101010101
0000101001010
0100011010110 Segment 0010101010101000010100101001
0100100010100 — 0001001010110010001011010100
1010010100101 1010010101001101011101010000
0100110101010
1010000 Convertto (Q0-A
DNA 01 - C LA N ]
Binary file
AGGGGGGACCAGGC
ACAGGCATCAGTTCA

GGCTATTAGCTCGAA



Typical DNA Storage System

Segmentation AddIndex __—____ Synthesis

» » »
——

File

Order of sequences lost in the
solution! - Add Index

000010101010101000010100101001
000101001010010010001010010100
001010010101001001010101010000

Length of index in binary segment at least log,(number of segments)
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Typical DNA Storage System

AddIndex __——_ Synthesis

»

Segmentation

»
» >

File

Sequencing/Basecalling is not perfect! =
1. Errors within an oligo sequence c
(substitution/insertion/deletion)

2. Missing Oligo sequences

I Basecalling
— x < |

~5-10% error

Nanopore
sequencing

47



Typical DNA Storage System

File

Outer Inner
Code Add Index =— Code o —

»

v

Decoded
File

»

v

Inner Code -> Corrects errors within oligos
Outer Code -> Corrects missing oligos

Synthesis
—_—

Nanopore
sequencing

Outer Code Inner Code S — Basecallin
Decoding Decoding —— g
— —-—% — - —
——% - »® —

~5-10% error

48



Channel Model — Insertion/Deletion Channel

&

... ACGTTCT--CGT ...

Channel Input

Sequencing

~5-10% error channel
insertion/deletion/
substitution

e

>
>

Basecalling

...AGGGTCCT--CGT ...



Channel Model — Insertion/Deletion Channel

= Basecalling Error: No good practical error correction code for 5-10%

Insertion/Deletions

J>
5
... ACGTTCT--CGT ...

Channel Input

Sequencing

~5-10% error channel
insertion/deletion/
substitution

e

>
>

Basecalling

v

...AGGGTCCT--CGT ...
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Channel Model — Insertion/Deletion Channel

= Basecalling Error: No good practical error correction code for 5-10%
Insertion/Deletions

= Common ldea: Sequence the input lot of times (~30-40x)
- cluster index, and perform “averaging” to reduce the error

\
jm

J Basecalling

J>
5
... ACGTTCT--CGT ...

Channel Input

Sequencing

AGGGTCCT--CGT ...
-~ - o e e -
5-10% error channel AC_GTTCT--CGT ...

msert.lon{deletlon/ . AC_GCTCT- -CGT...
substitution

51



Previous Works

=
©
o

=
N
o

We want to be
here!

=
n
o

Writing cost (bases/bit)
&

1.10
[2] [3]
0.90 - [
0.70
0.50
0 5 10 15 20 25 30

Reading cost (bases/bit)

Tradeoff between reading and writing costs

[2] L. Organick et al., “Random access in large-scale DNA data storage,"
Nature biotechnology, vol. 36, no. 3, p. 242, 2018.

[3] Randolph Lopez et al., “DNA assembly for nanopore data storage readout,”
Nature communications, vol. 10, no. 1, pp. 2933, 2019.
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... AAAGGGTTTAAA ...

Nanopore Error Model

D
~\’<‘\_'/::
-
| -
Ll N
: e
> 5 HC
g
"

Sequencing

Channel Input

Basecalling

v

...AGGGTCTT- -AAA ...
~5-10% error channel
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Key Insight!

&

... AAAGGGTTTAAA ...

Channel Input

v

o W
< “.““
5

/

Sequencing

Basecalling can improve if

the basecaller is aware of
the inner code structure

Work with raw current signal

rather than Basecalled DNA

Model Too Complex to work directly:
Use Machine Learning to simplify

\]

Basecaller
+ Inner Code
Decoder

v

... AAAGGGTTTAAA ...

v/
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Inner code decoding

&

Nanopore Simplified Model
Sequencing Parameters
| NN-based :
! Classical
Modeling
s S Inner code
from ,
- decoding

basecaller

NN-based model simplifies the complex model into a simpler Markov
model!

It repurposes the basecaller’s NN model which is optimized based on large
amounts of data.
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Integrated Decoding System

B | Outer . o Inner —
Code  — AddIndex ———— Code T gynthesis
> B s
File
o . Nanopore
Outer Code -> Corrects missing oligos sequencing
Inner Code -> Corrects errors within oligos
v
= Outer Code e Integrated
. — Basecaller + Inner code decoder
Decoding —_—
¢ — x < .
e
Decoded

File



Results

Lower is better

5us based approaches

Paper
1.8
@ Lopezetal (2019)
@ Organick et al. (2018)
1.6+ Convolutional code parameters
= ® m=11,r=3/4
2 s
n . m= r=
3 This & m=6, r=3/4
@ © m=8, r=3/4
o 1.4
= work
3
° Consens
C
= 1.21
=
1.0 1 4 ¢®
o @ (@]
®
0.8 ; !
3 10 30

Reading cost (bases/bit)

Lower is better



Overall approach

10111010001
00010001010
01001010101
01010100110
0101. ..

Raw data

M

DNA microchip

—p | e .

Encoding and

synthesis with

convolutional
code

ACGTGCGTACG
TACGTGAGGTA
GGACGTAGAGA
or.

Repeated access
%.\ *;f;‘” l l
“;’i.:‘c}
g /
k * e/
°
Conjugation Random access

Nanopore
sequencing

Decoding

10111010001
00010001010
01001010101
01010100110
0101. ..

Output




Future directions

 Automation of DNA data retrieval with liquid handling robots
* Possibility of real-time data decoding with nanopore sequencers
* Design cheaper, possibly more error prone synthesis platforms



Thank youl!



