

SPRINC: A next-generation compressor for FASTQ data

Shubham Chandak¹, Kedar Tatwawadi¹, Idoia Ochoa², Mikel Hernaez² & Tsachy Weissman¹ ¹Stanford University, ²University of Illinois at Urbana-Champaign **Download:** https://github.com/shubhamchandak94/SPRING/

Introduction

- High-Throughput Sequencing (HTS) experiments generate FASTQ files consisting of unaligned reads along with read identifiers and quality scores.
- A typical experiment generates 100s of GBs of uncompressed data.

Genome ~ 3 billion bases

Read Compression Algorithm

Stage I – Reordering: We try to reorder reads according to genome position using a dictionary-based greedy scheme.

Dead ID		Index (first k bases)	Read ID
20	ATAGCAAAAAAAAACAAACGGCA	ATAGCAAAAAAAA	20, 322, .
	A TAGCAAAAAAAAC AAACGGCA	TAGCAAAAAAAAC	10 , 1233,
10	TAGCAAAAAAAAAAAAAT CGGC C T	GCAAAAAAAACAA	2013
	TAGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		-
2013	GCAAAAAAAAAAA TCGGC A TAA	Dictio	onary

Fig. 4: Finding next read using dictionary indexed by read prefix.

Stage II – Encoding: We encode the reordered reads to remove the redundancy in consecutive reads.

Fig. 5: Encoding reordered reads into four streams.

We also transform the original order of reads to exploit read pairing.

Positions of reads after reordering

ions of reads after reordering				#	Position among
#	File 1	File 2			file 1 reads
1	10005	10105		1	5000
2	382780	382654	Transform	2	193521
3	1	98	Indristorini	3	1
•	•	•		• •	•

Entropy of reads

Notation: *m*: Genome length, *n*: Number of reads, H(X): entropy of X

Entropy of reads with (*) exact order preserved & (**) only pairing preserved:

 $\frac{n}{2}\log_2 m$ (*) $+\frac{\pi}{2}(H(insert\ size)+1)+$ nH(noise) $H(reads) \lesssim H(genome) +$ (**) log₂ (Store noisy bases Store genome Store insert size & Store positions of orientation read pairs in genome

SPRING

- SPRING practical compressor for FASTQ files.
- \rightarrow Support for wide variety of modes.
- \rightarrow Support for variable length short reads.
- \rightarrow Substantially better compression than existing tools.
- \rightarrow Competitive computational requirements.
- → Available at https://github.com/shubhamchandak94/SPRING/

n/2 200 120 nlogn bits

Gap between

paired reads

100

-126

97

Fig. 6: Encoding of read order. Only second column (gaps) needed for preserving read pairing.

n/2

Stage III – Compression: We compress the encoded streams using 7-zip and BSC.

Analysis

Results

- **Perfectly lossless mode** Entire FASTQ file stored as it is.
- Information-preserving mode Store only information needed for downstream applications:
- \rightarrow Read identifiers not retained.
- → Only read pairing information retained, pairs reordered arbitrarily.
- \rightarrow Quality scores binned (for older datasets).

Compression of human FASTQ datasets								
Technology	Cvg.	Read length	Size	Perfectly Lossless			Information-Preserving	
				Gzip	FaStore	SPRING	FaStore	SPRING
HiSeq 2000	28x	101	227	74	35.8	28.0	17.5	13.2
NovaSeq	25x	147	196	36	11.2	6.9	10.0	5.6
NovaSeq	100x	147	788	145	34.2	25.5	29.4	20.1

Fig. 3: All sizes are in GB.

100 50

Coverage

Fig. 7: Comparison of read compression modes for human NovaSeq data.

Future Work

• Integration into MPEG-G standard for genomic information representation.

• Extension to long-read technologies.

25