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Motivation

e High storage densities (100s of Petabytes per gram).
e Long-term durability (1000s of years).

e Easy duplication.

e Random access capabilities.

e Storage medium of choice for life on Earth.

e Ideal as an archival medium to store the knowledge gained by humanity over the millennia.
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Error Correcting Codes enable reliable data recovery even for noisy, low
cost synthesis and sequencing.

Our Contributions

Fundamental quantities to evaluate a DNA storage system:
e Writing cost (bases synthesized/message bit)

e Reading cost (bases sequenced/message bit) (not coverage)
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e Study theoretical tradeoff between writing cost and reading cost.

e Develop systems that yield better tradeoffs for both Illumina and Nanopore sequencing.

e Break inner-outer code separation which is theoretically suboptimal for short se-
quences.

e Basecaller-decoder integration for nanopore to exploit additional information in raw
current signal.
/
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Experimental Results

e Performed experiment with different code parameters, storing around 200 KB data each.
e Oligonucleotide pools synthesized with CustomArray, length 150 including primers.

e Sequenced with Illumina iSeq.

e Total error rate around 1.3% (substitution: 0.4%, deletion: 0.85%, insertion: 0.05%).

e Improved read/write cost tradeoff than previous works despite higher error rates and
coverage variance due to cheaper synthesis.
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Nanopore Sequencing - Ongoing Work

e Very high error rates after basecalling: 10-15 % (mostly indels).
e Advantages include portability, real-time sequencing, long reads.
e Previous works use very high coverage - suboptimal.

e Proposed approach - use additional information present in raw current signal.

Nanopore sequencing channel
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COMBINE STRENGTHS OF MACHINE LEARNING & CODING THEORY!

Using Flappie basecaller (Oxford Nanopore)
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Preliminary results:

e Around 3x-6x lower reading costs than [2].

e More than 50% sequences decoded from single read - theoretically impossible using
basecalled sequence with 10-15% error.

e Suggests that raw signal carries much more information than basecalled sequence -
this can help other bioinformatics applications as well. y
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