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• High storage densities (100s of Petabytes per gram).
• Long-term durability (1000s of years).
• Easy duplication.
• Random access capabilities.
• Storage medium of choice for life on Earth.
• Ideal as an archival medium to store the knowledge gained by humanity over the millennia.
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Error Correcting Codes enable reliable data recovery even for noisy, low
cost synthesis and sequencing.

Typical DNA Storage System

Fundamental quantities to evaluate a DNA storage system:
• Writing cost (bases synthesized/message bit)
• Reading cost (bases sequenced/message bit) (not coverage)

• Study theoretical tradeoff between writing cost and reading cost.
• Develop systems that yield better tradeoffs for both Illumina and Nanopore sequencing.
• Break inner-outer code separation which is theoretically suboptimal for short se-

quences.
• Basecaller-decoder integration for nanopore to exploit additional information in raw

current signal.
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Illumina Sequencing - Proposed Schematic

• Performed experiment with different code parameters, storing around 200 KB data each.
• Oligonucleotide pools synthesized with CustomArray, length 150 including primers.
• Sequenced with Illumina iSeq.
• Total error rate around 1.3% (substitution: 0.4%, deletion: 0.85%, insertion: 0.05%).
• Improved read/write cost tradeoff than previous works despite higher error rates and

coverage variance due to cheaper synthesis.
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Experimental Results

• Very high error rates after basecalling: 10-15 % (mostly indels).
• Advantages include portability, real-time sequencing, long reads.
• Previous works use very high coverage - suboptimal.
• Proposed approach - use additional information present in raw current signal.

1

… ACGTACGTACGT ...

Nanopore sequencing channel

•  Memory (inter-symbol interference)
•  Base skips
•  Fading
•  Random symbol duration
•  Noise

VERY HARD TO MODEL AND ANALYZE FAITHFULLY

COMBINE STRENGTHS OF MACHINE LEARNING & CODING THEORY! 

Deep neural network (DNN)
basecaller (state-of-the-art)

Viterbi convolutional 
decoder

10111 …
10011 …
10101 …

Soft information

Using Flappie basecaller (Oxford Nanopore)

Basecalling
Code constraints

not used

Probabilities
Decoding

Code constraints
used

AACGGT

ACGCGT

Basecaller
probability
transitions

Convolutional
code transitions

Preliminary results:
• Around 3x-6x lower reading costs than [2].
• More than 50% sequences decoded from single read - theoretically impossible using

basecalled sequence with 10-15% error.
• Suggests that raw signal carries much more information than basecalled sequence -

this can help other bioinformatics applications as well.

Nanopore Sequencing - Ongoing Work
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