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Motivation



The amount of stored data is growing exponentially:

Source: https://www.seagate.com/our-story/data-age-2025/



200 Petabyte



200 Petabyte

40,000 x 5 TByte HDDs
40 tons

10s of years



200 Petabyte

40,000 x 5 TByte HDDs
40 tons

10s of years

DNA
1 gram

1,000s of years



200 Petabyte

40,000 x 5 TByte HDDs
40 tons

10s of years

DNA
1 gram

1,000s of years Easy duplication



https://catalogdna.com/uncategorized/hot-news-for-the-summer-from-catalog/

https://catalogdna.com/uncategorized/hot-news-for-the-summer-from-catalog/
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How to store data in DNA sequences?
● Ability to synthesize short ssDNA oligonucleotides (~150 nt) at scale.

● Convert binary data to A/C/G/T alphabet: e.g., 00 – A, 01 – C, etc.

001010101010
100001010010
100100010010
100100100010
100101001010
010101001001
010101010000

Segment

Binary file

0010101010101000010100101001
0001001010010010001010010100
1010010101001001010101010000

Convert 
to DNA

AGGGGGGACCAGGC
.
.



How to store data in DNA sequences?
● Ability to synthesize short ssDNA oligonucleotides (~150 nt) at scale.
● Convert binary data to A/C/G/T alphabet: e.g., 00 – A, 01 – C, etc.

● But order of sequences lost in the solution – need to add index to each segment.

000010101010101000010100101001
010001001010010010001010010100
101010010101001001010101010000

Length of index in binary segment at least log2(number of segments)



How to store data in DNA sequences?
● Ability to synthesize short ssDNA oligonucleotides (~150 nt) at scale.
● Convert binary data to A/C/G/T alphabet: e.g., 00 – A, 01 – C, etc.
● But order of sequences lost in the solution – need to add index to each segment.

● Some sequences have zero coverage while sequencing – erasure coding+coverage.

Figure source: https://www.usenix.org/system/files/login/articles/10_plank-online.pdf

Also used in traditional storage 
systems (e.g., RAID)

https://www.usenix.org/system/files/login/articles/10_plank-online.pdf


How to store data in DNA sequences?
● Ability to synthesize short ssDNA oligonucleotides (~150 nt) at scale.
● Convert binary data to A/C/G/T alphabet: e.g., 00 – A, 01 – C, etc.
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0100010011
Data bits

Encode 01000100111011
Data+parity bits

Bitflip 01000101111011

Decoding

01000100111011
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How to store data in DNA sequences?
● Ability to synthesize short ssDNA oligonucleotides (~150 nt) at scale.
● Convert binary data to A/C/G/T alphabet: e.g., 00 – A, 01 – C, etc.
● But order of sequences lost in the solution – need to add index to each segment.
● Some sequences have zero coverage while sequencing – erasure coding+coverage.
● Sequencing and synthesis cause errors – substitutions, insertions and deletions – error correction 

coding+coverage. 
● Error correction studied extensively for communication and traditional data storage systems –

information theory and coding theory.

Error/Erasure Correcting Codes enable reliable data recovery even for noisy, 
low cost synthesis and sequencing – likely to be the future of DNA storage.
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Typical DNA Storage System

Segmentation

File

Storage

Sequencing + Basecalling

Reconstructed file

Outer code Inner code Synthesis

•  Duplication
•  Permutation
•  Loss
•  Corruption

Sequenced reads

Decoding



< 1% 10 - 15%Error ratesError rates

Illumina sequencing

❌Portability

2nd gen sequencing 3rd gen sequencing

Nanopore sequencing

✅

❌Real-time ✅

❌Long reads ✅

insertions
deletions
substitutions

Long reads
Real-time
Portability

mostly
substitutions

✅Throughput ❌Throughput



Previous works
● Multiple previous works focusing on:

○ Error correction coding

○ Random access of subsets of sequences using PCR primers

○ Scalable and cost effective synthesis techniques

○ Different sequencing platforms

○ Theoretical analysis

1. Yazdi, SM Hossein Tabatabaei, et al. "A rewritable, random-access DNA-based storage system." Scientific reports 5 (2015): 14138.
2. Erlich, Yaniv, and Dina Zielinski. "DNA Fountain enables a robust and efficient storage architecture." Science 355.6328 (2017): 950-954.
3. Organick, Lee, et al. "Random access in large-scale DNA data storage." Nature biotechnology 36.3 (2018): 242.
4. Blawat, Meinolf, et al. "Forward error correction for DNA data storage." Procedia Computer Science 80 (2016): 1011-1022.
5. Church, George M., Yuan Gao, and Sriram Kosuri. "Next-generation digital information storage in DNA." Science 337.6102 (2012): 1628-1628.
6. Heckel, Reinhard, et al. "Fundamental limits of DNA storage systems." 2017 IEEE International Symposium on Information Theory (ISIT). IEEE, 2017.
7. Tomek, Kyle J., et al. "Driving the scalability of DNA-based information storage systems." ACS synthetic biology (2019).
8. Lenz, Andreas, et al. "Coding over sets for DNA storage." 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, 2018.
9. Lee, Henry H., et al. "Terminator-free template-independent enzymatic DNA synthesis for digital information storage." Nature communications 10.1 (2019): 2383.
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Our contribution

● Fundamental quantities to evaluate a DNA storage system:

○ Writing cost (bases synthesized/message bit)

○ Reading cost (bases sequenced/message bit) (not coverage)

• Study theoretical tradeoff between writing cost and reading cost.
• Achieve better tradeoff by reducing reliance on high coverage.
• Break inner-outer code separation which is theoretically suboptimal for 

short sequences.
• Basecaller-decoder integration for nanopore to exploit additional 

information in raw current signal.



Illumina sequencing-based DNA storage
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Key idea

Segment Outer Inner 

SegmentCode

Strategy 1: Inner/outer code separation

Strategy 2: Single large block code (LDPC)



Experimental Results
• Multiple parameter experiments, storing around 200 KB data each.

• CustomArray synthesis, length 150 including primers.

• Sequenced with Illumina iSeq.

• Total error rate around 1.3% (substitution: 0.4%, deletion: 0.85%, insertion: 
0.05%) – cheaper and noisier synthesis as compared to previous works.

• Approach combines LDPC codes with heuristics for handling deletion errors.



Experimental Results

1. Y. Erlich and D. Zielinski, “DNA Fountain enables a robust and efficient storage architecture," Science, vol. 355, no. 6328, pp. 950-954, 2017.
2. L. Organick et al., “Random access in large-scale DNA data storage," Nature biotechnology, vol. 36, no. 3, p. 242, 2018.
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Nanopore sequencing-based DNA storage



… ACGTACGTACGT ...

Nanopore sequencing channel

•  Memory (inter-symbol interference)
•  Base skips
•  Fading
•  Random symbol duration
•  Noise

Nanopore Sequencing Model

Source: "Models and Information-Theoretic Bounds for Nanopore Sequencing", Wei Mao et al., IEEE Trans. Inf. Theory 2017
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… ACGTACGTACGT ...

Nanopore sequencing channel

•  Memory (inter-symbol interference)
•  Base skips
•  Fading
•  Random symbol duration
•  Noise

VERY HARD TO MODEL AND ANALYZE FAITHFULLY

COMBINE STRENGTHS OF MACHINE LEARNING & CODING THEORY! 

Nanopore Sequencing Model

Source: "Models and Information-Theoretic Bounds for Nanopore Sequencing", Wei Mao et al., IEEE Trans. Inf. Theory 2017
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Preliminary Results

● Around 3x-6x lower reading costs than state-of-the-art [1].

1. L. Organick et al., “Random access in large-scale DNA data storage," Nature biotechnology, vol. 36, no. 3, p. 242, 2018.
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Preliminary Results

● Around 3x-6x lower reading costs than state-of-the-art [1].

● Significant fraction of sequences decoded from single read - theoretically 
impossible using basecalled sequence with 10-15% error.

● Suggests that raw signal carries much more information than basecalled
sequence - this can help other bioinformatics applications as well.

1. L. Organick et al., “Random access in large-scale DNA data storage," Nature biotechnology, vol. 36, no. 3, p. 242, 2018.
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Conclusions and future work

● Introduced novel coding schemes for both Illumina and nanopore based storage.

● Plan to integrate these with random access and repeated reading.

● Long term vision: Nanopore sequencing + cheaper and noisier synthesis 
techniques:

○ Basecaller-decoder integration works with various synthesis strategies, e.g., k-mer by k-mer

● Core idea behind basecaller-decoder integration applicable beyond DNA storage:

○ Bioinformatics (soft-information based processing) - e.g., nanopolish

○ Communication (coding for complex and hard-to-model channels)
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Proposed approach - schematics

Reads
Decode 

index using 
BCH

Per-index 
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Deep neural network (DNN)
basecaller (state-of-the-art)

Viterbi convolutional 
decoder

10111 …
10011 …
10101 …

Soft information

Using Flappie basecaller (Oxford Nanopore)
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