

Error Correcting Codes for DNA based Data Storage

Shubham Chandak Stanford University ISMB/ECCB 2019

Outline

- Motivation
- DNA storage setup
- Illumina sequencing-based DNA storage
- Nanopore sequencing-based DNA storage
- Conclusions

Motivation

The amount of stored data is growing exponentially:

Source: Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018

Source: https://www.seagate.com/our-story/data-age-2025/

40,000 x 5 TByte HDDs 40 tons

10s of years

40,000 x 5 TByte HDDs 40 tons

10s of years

DNA 1 gram

1,000s of years

40,000 x 5 TByte HDDs 40 tons

10s of years

July 2, 2019

Hot News for the Summer from CATALOG

POSTED BY : SEAN MIHM / 0 COMMENTS / UNDER : UNCATEGORIZED

CATALOG Encodes Wikipedia Into DNA!

https://catalogdna.com/uncategorized/hot-news-for-the-summer-from-catalog/

• Ability to synthesize short ssDNA oligonucleotides (~150 nt) at scale.

- Ability to synthesize short ssDNA oligonucleotides (~150 nt) at scale.
- Convert binary data to A/C/G/T alphabet: e.g., 00 A, 01 C, etc.

- Ability to synthesize short ssDNA oligonucleotides (~150 nt) at scale.
- Convert binary data to A/C/G/T alphabet: e.g., 00 A, 01 C, etc.
- But order of sequences lost in the solution need to add index to each segment.

Length of index in binary segment at least log₂(number of segments)

- Ability to synthesize short ssDNA oligonucleotides (~150 nt) at scale.
- Convert binary data to A/C/G/T alphabet: e.g., 00 A, 01 C, etc.
- But order of sequences lost in the solution need to add index to each segment.
- Some sequences have zero coverage while sequencing erasure coding+coverage.

Also used in traditional storage systems (e.g., RAID)

Figure source: <u>https://www.usenix.org/system/files/login/articles/10_plank-online.pdf</u>

- Ability to synthesize short ssDNA oligonucleotides (~150 nt) at scale.
- Convert binary data to A/C/G/T alphabet: e.g., 00 A, 01 C, etc.
- But order of sequences lost in the solution need to add index to each segment.
- Some sequences have zero coverage while sequencing erasure coding+coverage.
- Sequencing and synthesis cause errors substitutions, insertions and deletions error correction coding+coverage.

- Ability to synthesize short ssDNA oligonucleotides (~150 nt) at scale.
- Convert binary data to A/C/G/T alphabet: e.g., 00 A, 01 C, etc.
- But order of sequences lost in the solution need to add index to each segment.
- Some sequences have zero coverage while sequencing erasure coding+coverage.
- Sequencing and synthesis cause errors substitutions, insertions and deletions error correction coding+coverage.
- Error correction studied extensively for communication and traditional data storage systems information theory and coding theory.

- Ability to synthesize short ssDNA oligonucleotides (~150 nt) at scale.
- Convert binary data to A/C/G/T alphabet: e.g., 00 A, 01 C, etc.
- But order of sequences lost in the solution need to add index to each segment.
- Some sequences have zero coverage while sequencing erasure coding+coverage.
- Sequencing and synthesis cause errors substitutions, insertions and deletions error correction coding+coverage.
- Error correction studied extensively for communication and traditional data storage systems information theory and coding theory.

Error/Erasure Correcting Codes enable reliable data recovery even for noisy, low cost synthesis and sequencing – likely to be the future of DNA storage.

DNA storage setup

0	
0	

File

File

File

Storage

2nd gen sequencing

Illumina sequencing

Portability Real-time Long reads Throughput Error rates

{ mostly substitutions

3rd gen sequencing

Nanopore sequencing

Portability Real-time Long reads Throughput Error rates

insertions deletions substitutions

Previous works

- Multiple previous works focusing on:
 - Error correction coding
 - Random access of subsets of sequences using PCR primers
 - Scalable and cost effective synthesis techniques
 - Different sequencing platforms
 - Theoretical analysis

Yazdi, SM Hossein Tabatabaei, et al. "A rewritable, random-access DNA-based storage system." *Scientific reports* 5 (2015): 14138.
Erlich, Yaniv, and Dina Zielinski. "DNA Fountain enables a robust and efficient storage architecture." Science 355.6328 (2017): 950-954.
Organick, Lee, et al. "Random access in large-scale DNA data storage." Nature biotechnology 36.3 (2018): 242.
Blawat, Meinolf, et al. "Forward error correction for DNA data storage." Procedia Computer Science 80 (2016): 1011-1022.
Church, George M., Yuan Gao, and Sriram Kosuri. "Next-generation digital information storage in DNA." *Science* 337.6102 (2012): 1628-1628.
Heckel, Reinhard, et al. "Fundamental limits of DNA storage systems." *2017 IEEE International Symposium on Information Theory (ISIT)*. IEEE, 2017.
Tomek, Kyle J., et al. "Driving the scalability of DNA-based information storage systems." *ACS synthetic biology* (2019).
Lenz, Andreas, et al. "Coding over sets for DNA storage." *2018 IEEE International Symposium on Information Theory (ISIT)*. IEEE, 2018.
Lee, Henry H., et al. "Terminator-free template-independent enzymatic DNA synthesis for digital information storage." *Nature communications* 10.1 (2019): 2383.

- Fundamental quantities to evaluate a DNA storage system:
 - Writing cost (bases synthesized/message bit)
 - Reading cost (bases sequenced/message bit) (*not* coverage)

- Fundamental quantities to evaluate a DNA storage system:
 - Writing cost (bases synthesized/message bit)
 - Reading cost (bases sequenced/message bit) (*not* coverage)

• Study theoretical tradeoff between writing cost and reading cost.

- Fundamental quantities to evaluate a DNA storage system:
 - Writing cost (bases synthesized/message bit)
 - Reading cost (bases sequenced/message bit) (*not* coverage)

- Study theoretical tradeoff between writing cost and reading cost.
- Achieve better tradeoff by reducing reliance on high coverage.

- Fundamental quantities to evaluate a DNA storage system:
 - Writing cost (bases synthesized/message bit)
 - Reading cost (bases sequenced/message bit) (*not* coverage)

- Study theoretical tradeoff between writing cost and reading cost.
- Achieve better tradeoff by reducing reliance on high coverage.
- Break inner-outer code separation which is theoretically suboptimal for short sequences.

- Fundamental quantities to evaluate a DNA storage system:
 - Writing cost (bases synthesized/message bit)
 - Reading cost (bases sequenced/message bit) (*not* coverage)

- Study theoretical tradeoff between writing cost and reading cost.
- Achieve better tradeoff by reducing reliance on high coverage.
- Break inner-outer code separation which is theoretically suboptimal for short sequences.
- Basecaller-decoder integration for nanopore to exploit additional information in raw current signal.

Illumina sequencing-based DNA storage

Key idea

Experimental Results

- Multiple parameter experiments, storing around 200 KB data each.
- CustomArray synthesis, length 150 including primers.
- Sequenced with Illumina iSeq.
- Total error rate around 1.3% (substitution: 0.4%, deletion: 0.85%, insertion: 0.05%) *cheaper* and *noisier* synthesis as compared to previous works.
- Approach combines LDPC codes with heuristics for handling deletion errors.

Experimental Results

1. Y. Erlich and D. Zielinski, "DNA Fountain enables a robust and efficient storage architecture," *Science*, vol. 355, no. 6328, pp. 950-954, 2017. 2. L. Organick *et al.*, "Random access in large-scale DNA data storage," *Nature biotechnology*, vol. 36, no. 3, p. 242, 2018.

Nanopore sequencing-based DNA storage

Nanopore Sequencing Model

Nanopore sequencing channel

- Memory (inter-symbol interference)
- Base skips
- Fading
- Random symbol duration
- Noise

Nanopore Sequencing Model

Nanopore sequencing channel

- Memory (inter-symbol interference)
- Base skips
- Fading
- Random symbol duration
- Noise

VERY HARD TO MODEL AND ANALYZE FAITHFULLY

Source: "Models and Information-Theoretic Bounds for Nanopore Sequencing", Wei Mao et al., IEEE Trans. Inf. Theory 2017

Nanopore Sequencing Model

- Memory (inter-symbol interference)
- Base skips
- Fading
- Random symbol duration
- Noise

VERY HARD TO MODEL AND ANALYZE FAITHFULLY

COMBINE STRENGTHS OF MACHINE LEARNING & CODING THEORY!

Source: "Models and Information-Theoretic Bounds for Nanopore Sequencing", Wei Mao et al., IEEE Trans. Inf. Theory 2017

Preliminary Results

• Around **3x-6x** lower reading costs than state-of-the-art [1].

1. L. Organick et al., "Random access in large-scale DNA data storage," Nature biotechnology, vol. 36, no. 3, p. 242, 2018.

Preliminary Results

- Around **3x-6x** lower reading costs than state-of-the-art [1].
- Significant fraction of sequences decoded from single read theoretically impossible using basecalled sequence with 10-15% error.

1. L. Organick et al., "Random access in large-scale DNA data storage," Nature biotechnology, vol. 36, no. 3, p. 242, 2018.

Preliminary Results

- Around **3x-6x** lower reading costs than state-of-the-art [1].
- Significant fraction of sequences decoded from single read theoretically impossible using basecalled sequence with 10-15% error.
- Suggests that **raw signal** carries much **more information** than **basecalled sequence** this can help other bioinformatics applications as well.

1. L. Organick et al., "Random access in large-scale DNA data storage," Nature biotechnology, vol. 36, no. 3, p. 242, 2018.

• Introduced novel coding schemes for both Illumina and nanopore based storage.

- Introduced novel coding schemes for both Illumina and nanopore based storage.
- Plan to integrate these with random access and repeated reading.

- Introduced novel coding schemes for both Illumina and nanopore based storage.
- Plan to integrate these with random access and repeated reading.
- Long term vision: Nanopore sequencing + cheaper and noisier synthesis techniques:
 - Basecaller-decoder integration works with various synthesis strategies, e.g., k-mer by k-mer

- Introduced novel coding schemes for both Illumina and nanopore based storage.
- Plan to integrate these with random access and repeated reading.
- Long term vision: Nanopore sequencing + cheaper and noisier synthesis techniques:
 - Basecaller-decoder integration works with various synthesis strategies, e.g., k-mer by k-mer
- Core idea behind basecaller-decoder integration applicable beyond DNA storage:
 - Bioinformatics (soft-information based processing) e.g., nanopolish
 - Communication (coding for complex and hard-to-model channels)

Team and funding

Billy

Lau

Dmitri

Shubham Chandak

Kedar Joachim Tatwawadi

Neu

Jay Mardia

Matt Kubit Pavlichin

Peter Griffin

Tsachy Weissman Mary Wootters

Hanlee Ji

Team and funding

Shubham Chandak

Kedar Tatwawadi

Joachim Neu

Jay Mardia Billy I Lau k

Matt Kubit Dmitri Pavlichin Peter Griffin

Tsachy Weissman Mary Wootters

Hanlee Ji

SemiSynBio: Highly scalable random access DNA data storage with nanopore-based reading

Beckman Center Innovative Technology Seed Grant Scalable Long-Term DNA Storage with Error Correction and Random-Access Retrieval

National Institutes of Health

Thank You

Poster session today 6pm-8pm: V-071

Proposed approach - schematics

Proposed approach - schematics

Proposed approach - schematics

Stanford

