
SPRING: a next-generation
compressor for FASTQ data

Shubham Chandak
Stanford University

ISMB/ECCB 2019

Joint work with

• Kedar Tatwawadi, Stanford University
• Idoia Ochoa, UIUC
• Mikel Hernaez, UIUC
• Tsachy Weissman, Stanford University

Outline

• Introduction and motivation
• FASTQ format and compression results
• Algorithms - SPRING and others
• SPRING as a practical tool
• Next steps

Genome sequencing

• Genome: long string of bases {A, C, G, T}
• Sequenced as noisy paired substrings (reads):

~ 300 – 500 bases ~ 100 –150 bases

Genome ~ 3 billion bases
AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

Coverage/
Depth:

~30x-60x

Typical workflows

Typical workflows

Sequencing Raw reads
Alignment

to
reference

Aligned
reads

Variant
calling w.r.t.
reference

VCF
(tabular

data)

Typical workflows

Sequencing Raw reads
Alignment

to
reference

Aligned
reads

Variant
calling w.r.t.
reference

VCF
(tabular

data)

Sequencing Raw reads Assembly Assembled
genome

Why store raw reads?

Why store raw reads?

• Pipelines improve with time - need raw data for reanalysis

Why store raw reads?

• Pipelines improve with time - need raw data for reanalysis
• For temporary storage - alignment and assembly time-consuming

Why store raw reads?

• Pipelines improve with time - need raw data for reanalysis
• For temporary storage - alignment and assembly time-consuming
• Can’t perform alignment when reference genome not available – e.g.,

de novo assembly or metagenomics

Why store raw reads?

• Pipelines improve with time - need raw data for reanalysis
• For temporary storage - alignment and assembly time-consuming
• Can’t perform alignment when reference genome not available – e.g.,

de novo assembly or metagenomics
• Can get better compression than aligned data compression if

significant variation from reference (more on this later)!

FASTQ format

FASTQ format

We’ll mostly focus on reads in this talk.

Read compression

Read compression

• For a typical 25x human dataset:
• Uncompressed: 79 GB (1 byte/base)

Read compression

• For a typical 25x human dataset:
• Uncompressed: 79 GB (1 byte/base)
• Gzip: ~20 GB (2 bits/base) – still far from optimal

Read compression

• For a typical 25x human dataset:
• Uncompressed: 79 GB (1 byte/base)
• Gzip: ~20 GB (2 bits/base) – still far from optimal

• Order of read pairs in FASTQ irrelevant – can this help?

Read compression results

Compressor 25x human

Uncompressed 79 GB

Gzip ~20 GB

Read compression results

Compressor 25x human

Uncompressed 79 GB

Gzip ~20 GB

FaStore
(allow reordering) 6 GB

Łukasz Roguski, Idoia Ochoa, Mikel Hernaez, Sebastian Deorowicz; FaStore: a space-saving solution for raw sequencing data, Bioinformatics, Volume 34,
Issue 16, 15 August 2018, Pages 2748–2756

Read compression results

Compressor 25x human

Uncompressed 79 GB

Gzip ~20 GB

FaStore
(allow reordering) 6 GB

SPRING
(no reordering) 3 GB

SPRING
(allow reordering) 2 GB

Łukasz Roguski, Idoia Ochoa, Mikel Hernaez, Sebastian Deorowicz; FaStore: a space-saving solution for raw sequencing data, Bioinformatics, Volume 34,
Issue 16, 15 August 2018, Pages 2748–2756

Read compression results

Compressor 25x human 100x human

Uncompressed 79 GB 319 GB

Gzip ~20 GB ~80 GB

FaStore
(allow reordering) 6 GB 13.7 GB

SPRING
(no reordering) 3 GB 10 GB

SPRING
(allow reordering) 2 GB 5.7 GB

Łukasz Roguski, Idoia Ochoa, Mikel Hernaez, Sebastian Deorowicz; FaStore: a space-saving solution for raw sequencing data, Bioinformatics, Volume 34,
Issue 16, 15 August 2018, Pages 2748–2756

Key idea

• Storing reads equivalent to

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

Key idea

• Storing reads equivalent to
• Store genome

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

Key idea

• Storing reads equivalent to
• Store genome
• Store read positions in genome (+ gap between paired reads)

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

Key idea

• Storing reads equivalent to
• Store genome
• Store read positions in genome (+ gap between paired reads)
• Store noise in reads

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

Key idea

• Storing reads equivalent to
• Store genome
• Store read positions in genome (+ gap between paired reads)
• Store noise in reads

• Entropy calculations show this outperforms previous compressors

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

Key idea

• But... How to get the genome from the reads?

Key idea

• But... How to get the genome from the reads?
• Genome assembly too expensive - big challenges:
• resolve repeats
• get very long pieces of genome from shorter assemblies

Key idea

• But... How to get the genome from the reads?
• Genome assembly too expensive - big challenges:
• resolve repeats
• get very long pieces of genome from shorter assemblies

• Solution: Don’t need perfect assembly for compression!

SPRING workflow

Raw reads

SPRING workflow

Approximate
assembly

Raw reads

Contigs

SPRING workflow

Approximate
assembly

Raw reads

Encode

• Assembled sequence
• Read position in

assembled sequence
• Gap b/w paired reads
• Noisy bases + positions
• Etc.

Contigs

SPRING workflow

Approximate
assembly

Raw reads

Encode

• Assembled sequence
• Read position in

assembled sequence
• Gap b/w paired reads
• Noisy bases + positions
• Etc.

BSC

Compressed file

https://github.com/IlyaGrebnov/libbsc

Contigs

https://github.com/IlyaGrebnov/libbsc

SPRING workflow

Approximate
assembly

Raw reads

Encode

• Assembled sequence
• Read position in

assembled sequence
• Gap b/w paired reads
• Noisy bases + positions
• Etc.

BSC

Compressed fileIn “allow reordering” mode: reorder by
position in approximate assembly

https://github.com/IlyaGrebnov/libbsc

Contigs

https://github.com/IlyaGrebnov/libbsc

Approx. assembly/reordering step (simplified)

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small

Hamming distance

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small

Hamming distance
• Example (reads indexed by prefix for simplicity):
• ACGATCGTACGTACGATCGTCAG (current read)

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small

Hamming distance
• Example (reads indexed by prefix for simplicity):
• ACGATCGTACGTACGATCGTCAG (current read)
• ACGATCGTACGTATACGGGTACG (candidate next read)

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small

Hamming distance
• Example (reads indexed by prefix for simplicity):
• ACGATCGTACGTACGATCGTCAG (current read)
• ACGATCGTACGTATACGGGTACG (candidate next read)
• Index match found but Hamming distance too large → shift search substring

by one

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small

Hamming distance
• Example (reads indexed by prefix for simplicity):
• ACGATCGTACGTACGATCGTCAG (current read)

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small

Hamming distance
• Example (reads indexed by prefix for simplicity):
• ACGATCGTACGTACGATCGTCAG (current read)

• No index match found → shift search substring by one

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small

Hamming distance
• Example (reads indexed by prefix for simplicity):
• ACGATCGTACGTACGATCGTCAG (current read)
• GATCGTACGTATGATGGTCATTA (candidate next read)

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small

Hamming distance
• Example (reads indexed by prefix for simplicity):
• ACGATCGTACGTACGATCGTCAG (current read)
• GATCGTACGTATGATGGTCATTA (candidate next read)
• Next read found!

• Repeat process with the new read

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small

Hamming distance
• Example (reads indexed by prefix for simplicity):
• ACGATCGTACGTACGATCGTCAG (current read)
• GATCGTACGTATGATGGTCATTA (candidate next read)
• Next read found!

• Repeat process with the new read.
• If no match found at any shift, pick arbitrary remaining read & start

new contig

Quality and read identifier compression

Quality and read identifier compression

• Quality – use general purpose compressor BSC (optionally apply
quantization)
• Read identifier – split into tokens and use arithmetic coding [1]

1. Bonfield, James K., and Matthew V. Mahoney. "Compression of FASTQ and SAM format sequencing data." PloS one 8.3
(2013): e59190.

Quality and read identifier compression

• Quality – use general purpose compressor BSC (optionally apply
quantization)
• Read identifier – split into tokens and use arithmetic coding [1]

Dataset Reads Quality Read identifier

Hiseq 2000 28x, 100 bp x 2 4.3 23.8 0.9

Novaseq 25x, 150 bp x 2 3.0 3.6 0.3

All human datasets. Sizes in GB.

1. Bonfield, James K., and Matthew V. Mahoney. "Compression of FASTQ and SAM format sequencing data." PloS one 8.3
(2013): e59190.

Quality and read identifier compression

• Quality – use general purpose compressor BSC (optionally apply
quantization)
• Read identifier – split into tokens and use arithmetic coding [1]

Dataset Reads Quality Read identifier

Hiseq 2000 28x, 100 bp x 2 4.3 23.8 0.9

Novaseq 25x, 150 bp x 2 3.0 3.6 0.3

Novaseq 25x, 150 bp x 2
(allow reordering)

2.0 3.6 1.4

All human datasets. Sizes in GB.

1. Bonfield, James K., and Matthew V. Mahoney. "Compression of FASTQ and SAM format sequencing data." PloS one 8.3
(2013): e59190.

SPRING vs. reference-based compression
195 GB

25x human
FASTQ

NovaSeq

SPRING vs. reference-based compression
195 GB

25x human
FASTQ

NovaSeq

SPRING
2 hours

7 GB lossless
SPRING
archive

SPRING vs. reference-based compression
195 GB

25x human
FASTQ

NovaSeq

SPRING
2 hours

7 GB lossless
SPRING
archive

BWA-MEM
alignment

(hg19)
8 hours

SAM file
Remove

irrelevant fields
(sorting)

SPRING vs. reference-based compression
195 GB

25x human
FASTQ

NovaSeq

SPRING
2 hours

7 GB lossless
SPRING
archive

BWA-MEM
alignment

(hg19)
8 hours

SAM file
Remove

irrelevant fields
CRAM v3
25 min

(sorting)

Unsorted: 7.6 GB
Sorted: 7.8 GB
Sorted (+ embedded
reference): 8.5 GB

*partly due to quality
compression

improvements in SPRING

SPRING vs. reference-based compression
195 GB

25x human
FASTQ

NovaSeq

SPRING
2 hours

7 GB lossless
SPRING
archive

BWA-MEM
alignment

(hg19)
8 hours

SAM file
Remove

irrelevant fields
CRAM v3
25 min

(sorting)

Advantage can be even greater in
case of large variations between

reference genome & FASTQ genome.

Unsorted: 7.6 GB
Sorted: 7.8 GB
Sorted (+ embedded
reference): 8.5 GB

*partly due to quality
compression

improvements in SPRING

Other approaches for FASTQ compression

Numanagić, Ibrahim, et al. "Comparison of high-throughput sequencing data compression tools." Nature
Methods 13.12 (2016): 1005.
Hernaez, Mikel, et al. "Genomic Data Compression." Annual Review of Biomedical Data Science 2 (2019).

Other approaches for FASTQ compression

• gzip/bzip2

Numanagić, Ibrahim, et al. "Comparison of high-throughput sequencing data compression tools." Nature
Methods 13.12 (2016): 1005.
Hernaez, Mikel, et al. "Genomic Data Compression." Annual Review of Biomedical Data Science 2 (2019).

Other approaches for FASTQ compression

• gzip/bzip2
• Context-based arithmetic coding: DSRC 2, Fqzcomp, Quip

Numanagić, Ibrahim, et al. "Comparison of high-throughput sequencing data compression tools." Nature
Methods 13.12 (2016): 1005.
Hernaez, Mikel, et al. "Genomic Data Compression." Annual Review of Biomedical Data Science 2 (2019).

Other approaches for FASTQ compression

• gzip/bzip2
• Context-based arithmetic coding: DSRC 2, Fqzcomp, Quip
• Assembly based: Leon, Quip, Assembletrie

Numanagić, Ibrahim, et al. "Comparison of high-throughput sequencing data compression tools." Nature
Methods 13.12 (2016): 1005.
Hernaez, Mikel, et al. "Genomic Data Compression." Annual Review of Biomedical Data Science 2 (2019).

Other approaches for FASTQ compression

• gzip/bzip2
• Context-based arithmetic coding: DSRC 2, Fqzcomp, Quip
• Assembly based: Leon, Quip, Assembletrie
• Reordering based:
• Reordering based on substrings/minimizers: Orcom, Mince, FaStore, SCALCE
• BWT-based reordering: BEETL

Numanagić, Ibrahim, et al. "Comparison of high-throughput sequencing data compression tools." Nature
Methods 13.12 (2016): 1005.
Hernaez, Mikel, et al. "Genomic Data Compression." Annual Review of Biomedical Data Science 2 (2019).

Recent FASTQ compressors

Recent FASTQ compressors

• minicom [1]: Use minimizers to construct large contigs (assemblies)
• Slight improvement (5-10%) over SPRING on RNA-seq reads

1. Yuansheng Liu, Zuguo Yu, Marcel E Dinger, Jinyan Li, Index suffix–prefix overlaps by (w, k)-minimizer to generate long contigs for reads
compression, Bioinformatics, Volume 35, Issue 12, June 2019, Pages 2066–2074.

Recent FASTQ compressors

• minicom [1]: Use minimizers to construct large contigs (assemblies)
• Slight improvement (5-10%) over SPRING on RNA-seq reads

• FQSqueezer [2]: Adapt general-purpose compressors such as
prediction by partial matchting (PPM) and dynamic Markov coding
(DMC) to read compression
• 10-30% improvement over SPRING for bacterial datasets

1. Yuansheng Liu, Zuguo Yu, Marcel E Dinger, Jinyan Li, Index suffix–prefix overlaps by (w, k)-minimizer to generate long contigs for reads
compression, Bioinformatics, Volume 35, Issue 12, June 2019, Pages 2066–2074.

2. Deorowicz, Sebastian. "FQSqueezer: k-mer-based compression of sequencing data." bioRxiv (2019): 559807.

Recent FASTQ compressors

• minicom [1]: Use minimizers to construct large contigs (assemblies)
• Slight improvement (5-10%) over SPRING on RNA-seq reads

• FQSqueezer [2]: Adapt general-purpose compressors such as
prediction by partial matchting (PPM) and dynamic Markov coding
(DMC) to read compression
• 10-30% improvement over SPRING for bacterial datasets

• Both require significantly more time and memory than SPRING
• Not tested on moderate to high coverage human datasets

1. Yuansheng Liu, Zuguo Yu, Marcel E Dinger, Jinyan Li, Index suffix–prefix overlaps by (w, k)-minimizer to generate long contigs for reads
compression, Bioinformatics, Volume 35, Issue 12, June 2019, Pages 2066–2074.

2. Deorowicz, Sebastian. "FQSqueezer: k-mer-based compression of sequencing data." bioRxiv (2019): 559807.

SPRING as a practical tool

SPRING as a practical tool

195 GB
25x human

FASTQ

2 hours
32 GB RAM
8 threads

7 GB
SPRING
archive

26 minutes
6 GB RAM
8 threads

Original
FASTQ

SPRING as a practical tool

• ~1.6x better compression than FaStore with similar time/memory

195 GB
25x human

FASTQ

2 hours
32 GB RAM
8 threads

7 GB
SPRING
archive

26 minutes
6 GB RAM
8 threads

Original
FASTQ

SPRING as a practical tool

• ~1.6x better compression than FaStore with similar time/memory
• Easy to use with support for:
• Lossless and lossy modes
• Variable length reads, long reads, etc.
• Random access
• Scalable to large datasets

195 GB
25x human

FASTQ

2 hours
32 GB RAM
8 threads

7 GB
SPRING
archive

26 minutes
6 GB RAM
8 threads

Original
FASTQ

SPRING as a practical tool

• ~1.6x better compression than FaStore with similar time/memory
• Easy to use with support for:
• Lossless and lossy modes
• Variable length reads, long reads, etc.
• Random access
• Scalable to large datasets

• Github: https://github.com/shubhamchandak94/SPRING/

195 GB
25x human

FASTQ

2 hours
32 GB RAM
8 threads

7 GB
SPRING
archive

26 minutes
6 GB RAM
8 threads

Original
FASTQ

https://github.com/shubhamchandak94/SPRING/

Next steps

• Currently integrating SPRING with genie, an upcoming open source
MPEG-G codec

Next steps

• Currently integrating SPRING with genie, an upcoming open source
MPEG-G codec
• Third generation sequencing technologies (e.g., nanopore):

Next steps

• Currently integrating SPRING with genie, an upcoming open source
MPEG-G codec
• Third generation sequencing technologies (e.g., nanopore):
• Long reads, lots of insertions and deletion errors

• Hash based approximate assembly doesn’t extend immediately

Next steps

• Currently integrating SPRING with genie, an upcoming open source
MPEG-G codec
• Third generation sequencing technologies (e.g., nanopore):
• Long reads, lots of insertions and deletion errors

• Hash based approximate assembly doesn’t extend immediately
• New types of raw data – e.g., raw current signal for nanopore sequencing

• Need huge amounts of space and typically retained for further analysis

Next steps

• Currently integrating SPRING with genie, an upcoming open source
MPEG-G codec
• Third generation sequencing technologies (e.g., nanopore):
• Long reads, lots of insertions and deletion errors

• Hash based approximate assembly doesn’t extend immediately
• New types of raw data – e.g., raw current signal for nanopore sequencing

• Need huge amounts of space and typically retained for further analysis

• Time and memory efficient tool with compression close to SPRING:

Next steps

• Currently integrating SPRING with genie, an upcoming open source
MPEG-G codec
• Third generation sequencing technologies (e.g., nanopore):
• Long reads, lots of insertions and deletion errors

• Hash based approximate assembly doesn’t extend immediately
• New types of raw data – e.g., raw current signal for nanopore sequencing

• Need huge amounts of space and typically retained for further analysis

• Time and memory efficient tool with compression close to SPRING:
• Disk based strategies (like Orcom/FaStore)

Next steps

• Currently integrating SPRING with genie, an upcoming open source
MPEG-G codec
• Third generation sequencing technologies (e.g., nanopore):
• Long reads, lots of insertions and deletion errors

• Hash based approximate assembly doesn’t extend immediately
• New types of raw data – e.g., raw current signal for nanopore sequencing

• Need huge amounts of space and typically retained for further analysis

• Time and memory efficient tool with compression close to SPRING:
• Disk based strategies (like Orcom/FaStore)
• When reference is available, can do fast and approximate alignment

Thank you!

References

• Shubham Chandak, Kedar Tatwawadi, Tsachy Weissman; Compression of genomic sequencing
reads via hash-based reordering: algorithm and analysis, Bioinformatics, Volume 34, Issue 4, 15
February 2018, Pages 558–567

• Shubham Chandak, Kedar Tatwawadi, Idoia Ochoa, Mikel Hernaez, Tsachy Weissman; SPRING: a
next-generation compressor for FASTQ data, Bioinformatics, bty1015

• SPRING download: https://github.com/shubhamchandak94/Spring

• genie (open source MPEG-G codec – under development): https://github.com/mitogen/genie

https://github.com/shubhamchandak94/Spring
https://github.com/mitogen/genie

