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Genome sequencing

• Genome: long string of bases {A, C, G, T}
• Sequenced as noisy paired substrings (reads):

~ 300 – 500 bases ~ 100 –150 bases

Genome  ~ 3 billion bases
AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

Coverage/
Depth:

~30x-60x
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Why store raw reads?

• Pipelines improve with time - need raw data for reanalysis
• For temporary storage - alignment and assembly time-consuming
• Can’t perform alignment when reference genome not available – e.g., 

de novo assembly or metagenomics
• Can get better compression than aligned data compression if 

significant variation from reference (more on this later)!
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FASTQ format

We’ll mostly focus on reads in this talk.
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Read compression

• For a typical 25x human dataset:
• Uncompressed:    79 GB (1 byte/base)
• Gzip: ~20 GB (2 bits/base) – still far from optimal

• Order of read pairs in FASTQ irrelevant – can this help? 
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Read compression results

Compressor 25x human 100x human

Uncompressed 79 GB 319 GB

Gzip ~20 GB ~80 GB

FaStore
(allow reordering) 6 GB 13.7 GB

SPRING
(no reordering) 3 GB 10 GB

SPRING
(allow reordering) 2 GB 5.7 GB

Łukasz Roguski, Idoia Ochoa, Mikel Hernaez, Sebastian Deorowicz; FaStore: a space-saving solution for raw sequencing data, Bioinformatics, Volume 34, 
Issue 16, 15 August 2018, Pages 2748–2756
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Key idea 

• Storing reads equivalent to
• Store genome
• Store read positions in genome (+ gap between paired reads)
• Store noise in reads

• Entropy calculations show this outperforms previous compressors 

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT
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Key idea 

• But... How to get the genome from the reads?
• Genome assembly too expensive - big challenges:
• resolve repeats
• get very long pieces of genome from shorter assemblies

• Solution: Don’t need perfect assembly for compression!
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SPRING workflow

Approximate 
assembly

Raw reads

Encode

• Assembled sequence
• Read position in 

assembled sequence
• Gap b/w paired reads
• Noisy bases + positions
• Etc.

BSC

Compressed fileIn “allow reordering” mode: reorder by 
position in approximate assembly

https://github.com/IlyaGrebnov/libbsc

Contigs

https://github.com/IlyaGrebnov/libbsc
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Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small 

Hamming distance
• Example (reads indexed by prefix for simplicity):
• ACGATCGTACGTACGATCGTCAG   (current read)
• GATCGTACGTATGATGGTCATTA (candidate next read)
• Next read found!

• Repeat process with the new read. 
• If no match found at any shift, pick arbitrary remaining read & start 

new contig 
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Dataset Reads Quality Read identifier

Hiseq 2000 28x, 100 bp x 2 4.3 23.8 0.9
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All human datasets. Sizes in GB. 
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Quality and read identifier compression

• Quality – use general purpose compressor BSC (optionally apply 
quantization)
• Read identifier – split into tokens and use arithmetic coding [1]

Dataset Reads Quality Read identifier

Hiseq 2000 28x, 100 bp x 2 4.3 23.8 0.9

Novaseq 25x, 150 bp x 2 3.0 3.6 0.3

Novaseq 25x, 150 bp x 2
(allow reordering)

2.0 3.6 1.4

All human datasets. Sizes in GB. 

1. Bonfield, James K., and Matthew V. Mahoney. "Compression of FASTQ and SAM format sequencing data." PloS one 8.3 
(2013): e59190.
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195 GB

25x human 
FASTQ

NovaSeq

SPRING
2 hours

7 GB lossless
SPRING
archive

BWA-MEM
alignment

(hg19)
8 hours

SAM file
Remove 

irrelevant fields
CRAM v3
25 min

(sorting)

Advantage can be even greater in 
case of large variations between 

reference genome & FASTQ genome.

Unsorted:          7.6 GB
Sorted: 7.8 GB
Sorted (+ embedded 
reference):        8.5 GB

*partly due to quality 
compression 

improvements in SPRING
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Other approaches for FASTQ compression

• gzip/bzip2
• Context-based arithmetic coding: DSRC 2, Fqzcomp, Quip
• Assembly based: Leon, Quip, Assembletrie
• Reordering based:
• Reordering based on substrings/minimizers: Orcom, Mince, FaStore, SCALCE
• BWT-based reordering: BEETL

Numanagić, Ibrahim, et al. "Comparison of high-throughput sequencing data compression tools." Nature 
Methods 13.12 (2016): 1005.
Hernaez, Mikel, et al. "Genomic Data Compression." Annual Review of Biomedical Data Science 2 (2019).
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• Slight improvement (5-10%) over SPRING on RNA-seq reads
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Recent FASTQ compressors

• minicom [1]: Use minimizers to construct large contigs (assemblies)
• Slight improvement (5-10%) over SPRING on RNA-seq reads

• FQSqueezer [2]: Adapt general-purpose compressors such as 
prediction by partial matchting (PPM) and dynamic Markov coding 
(DMC) to read compression
• 10-30% improvement over SPRING for bacterial datasets

• Both require significantly more time and memory than SPRING
• Not tested on moderate to high coverage human datasets 

1. Yuansheng Liu, Zuguo Yu, Marcel E Dinger, Jinyan Li, Index suffix–prefix overlaps by (w, k)-minimizer to generate long contigs for reads 
compression, Bioinformatics, Volume 35, Issue 12, June 2019, Pages 2066–2074.

2. Deorowicz, Sebastian. "FQSqueezer: k-mer-based compression of sequencing data." bioRxiv (2019): 559807.
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SPRING as a practical tool

• ~1.6x better compression than FaStore with similar time/memory
• Easy to use with support for:
• Lossless and lossy modes
• Variable length reads, long reads, etc.
• Random access
• Scalable to large datasets

• Github: https://github.com/shubhamchandak94/SPRING/

195 GB
25x human 

FASTQ

2 hours
32 GB RAM
8 threads

7 GB
SPRING
archive

26 minutes
6 GB RAM
8 threads

Original
FASTQ

https://github.com/shubhamchandak94/SPRING/
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Next steps

• Currently integrating SPRING with genie, an upcoming open source 
MPEG-G codec
• Third generation sequencing technologies (e.g., nanopore):
• Long reads, lots of insertions and deletion errors

• Hash based approximate assembly doesn’t extend immediately
• New types of raw data – e.g., raw current signal for nanopore sequencing

• Need huge amounts of space and typically retained for further analysis

• Time and memory efficient tool with compression close to SPRING:
• Disk based strategies (like Orcom/FaStore)
• When reference is available, can do fast and approximate alignment



Thank you!
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