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Introduction and Motivation
What is the genome?

What is genome sequencing?

Why compression?

Raw data and downstream analysis
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Image source: https://www.genome.gov/About-Genomics/Introduction-to-Genomics 4



What is the genome?

• Sequence of DNA bases in {A, C, G, T}

• Two complementary strands

• For humans:
• 3 billion bases (x2)
• Across 23 (x2) chromosomes

Image source: https://www.genome.gov/genetics-glossary/Double-Helix 5



Genome sequencing

6Image source: https://www.genengnews.com/uncategorized/first-nanopore-sequencing-of-human-genome/

“reads”

& amplification
ACGTCATCCGATGATTACGATCGATCGATCGATCGATCAGTCAGCTAGCAGTTCGATCAGTCTGCCTGCGTCTGCT

ATACGTAGTGATCGAT

https://www.genengnews.com/uncategorized/first-nanopore-sequencing-of-human-genome/
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500K human genomes ~1.5M eukaryote species8



Image source: https://www.genome.gov/about-genomics/fact-sheets/Genomic-Data-Science
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Sequencing & downstream analysis

• Aim: learn about the genome from the sequenced reads
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Sequencing & downstream analysis

• Aim: learn about the genome from the sequenced reads

• Two major analysis pipelines:
• Assembly
• Alignment + Variant Calling
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Genome assembly

Image source: https://knowgenetics.org/whole-genome-sequencing/

Reads



Alignment and Variant Calling

13
Image source: https://training.galaxyproject.org/archive/2019-02-07/topics/proteomics/tutorials/proteogenomics-
dbcreation/tutorial.html/

Alignment/Mapping to reference genome

Reference genome

Variant: A->G

Raw reads

Aligned reads

Reference base = A

Read base = G



Sequencing & downstream analysis

• Aim: learn about the genome from the sequenced reads

• Two major analysis pipelines:
• Assembly
• Alignment + Variant Calling

• Several sequencing methods with different features
• We focus on two leading technologies
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Sequencing technologies
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Image source:
https://www.genengnews.com/uncategorized/first-nanopore-sequencing-of-human-genome/
https://www.illumina.com/systems/sequencing-platforms/nextseq.html

Illumina NextSeq 550
Oxford Nanopore MinION

• High throughput
• Short reads
• Low error rate

• Portable and real-time
• Long reads
• Native DNA & direct RNA sequencing

We will talk about compression techniques for both technologies.

https://www.genengnews.com/uncategorized/first-nanopore-sequencing-of-human-genome/
https://www.illumina.com/systems/sequencing-platforms/nextseq.html
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• Lossy compression of nanopore raw signal data

16



SPRING: a compressor for FASTQ data
with Kedar Tatwawadi, Idoia Ochoa, Mikel Hernaez, Tsachy Weissman

Chandak, Shubham, et al. "SPRING: a next-generation compressor for FASTQ 
data." Bioinformatics 35.15 (2019): 2674-2676.
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Paired-end genome sequencing

• Genome: long string of bases {A, C, G, T}

• Sequenced as noisy paired substrings (reads):

~ 300 – 500 bases ~ 100 –150 bases

Genome  ~ 3 billion bases
AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

Coverage/
Depth:

~30x-60x
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Read pair 
obtained from 
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Why store raw reads?

• Pipelines improve with time - need raw data for reanalysis

• For temporary storage or regulatory requirements

• When reference genome not available – e.g., de novo assembly or 
metagenomics
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FASTQ format

We’ll mostly focus on reads in this talk.
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Read compression

• For a typical 25x human dataset:
• Uncompressed:    79 GB (1 byte/base)
• Gzip: ~20 GB (2 bits/base) – still far from optimal

• Order of read pairs in FASTQ irrelevant – can this help? 
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Read compression results

Compressor 25x human 

Uncompressed 79 GB

Gzip ~20 GB

22Illumina NovaSeq human whole genome data, 150bp x 2 



Read compression results

Compressor 25x human 

Uncompressed 79 GB

Gzip ~20 GB

FaStore
(allow reordering) 6 GB

23
Łukasz Roguski, Idoia Ochoa, Mikel Hernaez, Sebastian Deorowicz; FaStore: a space-saving solution for raw sequencing data, Bioinformatics, Volume 34, 
Issue 16, 15 August 2018, Pages 2748–2756



Read compression results

Compressor 25x human 

Uncompressed 79 GB

Gzip ~20 GB

FaStore
(allow reordering) 6 GB

SPRING
(no reordering) 3 GB

SPRING
(allow reordering) 2 GB

24
Łukasz Roguski, Idoia Ochoa, Mikel Hernaez, Sebastian Deorowicz; FaStore: a space-saving solution for raw sequencing data, Bioinformatics, Volume 34, 
Issue 16, 15 August 2018, Pages 2748–2756



Read compression results

Compressor 25x human 100x human

Uncompressed 79 GB 319 GB

Gzip ~20 GB ~80 GB

FaStore
(allow reordering) 6 GB 13.7 GB

SPRING
(no reordering) 3 GB 10 GB

SPRING
(allow reordering) 2 GB 5.7 GB

Łukasz Roguski, Idoia Ochoa, Mikel Hernaez, Sebastian Deorowicz; FaStore: a space-saving solution for raw sequencing data, Bioinformatics, Volume 34, 
Issue 16, 15 August 2018, Pages 2748–2756 25



Key idea 

• Storing reads equivalent to

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT
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Key idea 

• Storing reads equivalent to
• Store genome

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT
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Key idea 

• Storing reads equivalent to
• Store genome
• Store read positions in genome (+ gap between paired reads)

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT
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Key idea 

• Storing reads equivalent to
• Store genome
• Store read positions in genome (+ gap between paired reads)
• Store noise in reads

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT
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Key idea 

• Storing reads equivalent to
• Store genome
• Store read positions in genome (+ gap between paired reads)
• Store noise in reads

• Theoretical calculations show this outperforms previous compressors 

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT
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Key idea 

• But... How to get the genome from the reads?

• Genome assembly too expensive - big challenges:
• resolve repeats
• get very long pieces of genome from shorter assemblies

• Solution: Don’t need perfect assembly for compression!
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SPRING workflow

Approximate 
assembly

Raw reads

Encode

• Assembled sequence
• Read position in 

assembled sequence
• Gap b/w paired reads
• Noisy bases + positions

BSC

Compressed fileIn “allow reordering” mode: reorder by 
position in approximate assembly https://github.com/IlyaGrebnov/libbsc

32

general purpose 
compression 

https://github.com/IlyaGrebnov/libbsc


Quality and read identifier compression

• Quality – use general purpose compressor BSC (optionally apply 
quantization)

CCCF#2ADHHHHHJJJI -> BSC -> compressed bitstream
• Read identifier – split into tokens and use arithmetic coding1

@ERR174324.1 HSQ1009_86:1:1101:1192:2116/1

@ERR174324.1 HSQ1009_86:1:1101:1192:2116/1

1 Bonfield, James K., and Matthew V. Mahoney. "Compression of FASTQ and SAM format sequencing data." PloS one 8.3 
(2013): e59190. 33

Tokenization



Quality and read identifier compression
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Contribution to compressed size (GB), human data

Reads Quality Read identifier



SPRING as a practical tool

• Easy to use with support for:
• Lossless and lossy modes
• Variable length reads, long reads, etc.
• Compressed in blocks to allow partial/streaming decompression
• Scalable to large datasets
• Gzipped I/O

• Github: https://github.com/shubhamchandak94/SPRING/

195 GB
25x human 

FASTQ

2 hours
32 GB RAM
8 threads

7 GB
SPRING
Archive 

gzip: 36 GB
Fastore: 11 GB

26 minutes
6 GB RAM
8 threads

Original
FASTQ
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https://github.com/shubhamchandak94/SPRING/


Impact and future directions

• SPRING downloaded more than 1,500 times from Conda
• Interest from industry and medical institutions in improving and adopting SPRING
• Recent compressors like PGRC1 use similar paradigm and lossless/lossy modes, focusing on 

improving the approximate assembly
• SPRING is part of genie (open-source MPEG-G codec – under development): 

https://github.com/mitogen/genie

• Ongoing work on building specialized read compressor for long reads with insertion and deletion 
errors

1 Kowalski, Tomasz, and Szymon Piotr Grabowski. "Engineering the Compression of Sequencing Reads." bioRxiv (2020).
36

https://github.com/mitogen/genie
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Lossy compression of nanopore 
raw signal data
with Kedar Tatwawadi, Srivatsan Sridhar, Tsachy Weissman

Chandak, Shubham, et al. "Impact of lossy compression of nanopore raw signal data on basecalling
and consensus accuracy." Bioinformatics, Volume 36, Issue 22-23, 1 December 2020, Pages 5313–
5321.
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Nanopore Sequencing

Source: https://youtu.be/E9-Rm5AoZGw 39



Raw signal compression

• HDF5 file (“.fast5”) 

• ~18 bytes/base uncompressed

• VBZ: state-of-the-art lossless compressor
• Variable byte integer encoding + zstd
• 60% size reduction (30% over Gzip)
• Still require 1 TB for 30x human whole genome data

• Often need to retain raw intermediate data for (re)analysis

• Lossy compression? 

40
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Lossy time-series compression (LFZip1/SZ2)

!!, !", … , !# $!!, $!", … , $!#Compress compressed
bitstream

Decompress

Error constraint:  max!"#,…,& $! − &$! ≤ (

Maximum absolute error

1 Chandak, S., Tatwawadi, K., Wen, C., Wang, L., Ojea, J. A., & Weissman, T. (2020, March). LFZip: Lossy compression of multivariate floating-point 
time series data via improved prediction. In 2020 Data Compression Conference (DCC) (pp. 342-351). IEEE.
2 Liang, Xin, et al. "An efficient transformation scheme for lossy data compression with point-wise relative error bound." 2018 IEEE International 
Conference on Cluster Computing (CLUSTER). IEEE, 2018.

But the actual loss metric is the downstream accuracy
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Basecalling and consensus

42

DNA sample Nanopore sequencer Raw signal

Basecaller

Basecalled Reads
ATGCGATATCGAT..
ATTAGCTAATCGT..
GCTATCGTAATCG..

Consensus

ATGCGATAT-CGTT
ATGC-ATAT-CGAT
ATCCGATATACGAT

ATGCGATAT-CGATConsensus sequence:

Basecalling error
Ground truth TTGCGTATGCG--TTATCTGCTGA
Basecall ATGC-TATGCGGCTTAGCTGC--A

Consensus error
Ground truth TTGCGTATGCGTTATCTGCTGA
Consensus TTGCGTATACGTTATCT-CTGA
Read 1              ATGC-TATACGGCATCG-CTGA
Read 2              TTGCGTATACGTTAACT-CTGA 
Read 3              T-GCGTATACTTTATCTGCTCA



Evaluation pipeline: compression
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Raw current 
signal data

Lossy compression 
(LFZip and SZ) with 
range of distortion 
parameter values

Lossless VBZ 
compression

Record 
compressed 

sizes

Reconstructed 
raw signal

Original
raw signal

Lossless and lossy compression of raw signal data



Evaluation pipeline: downstream accuracy

Note: Attempt to “future-proof” by testing various tools/use cases 
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Basecalling and 
accuracy 

evaluation

Basecallers:
Guppy (HAC)
Guppy (Fast)

Bonito

Subsample
FASTQ

Consensus 
accuracy 

evaluation

Stage 1: Flye
Stage 2: Rebaler
Stage 3: Medaka

Basecalled
reads in FASTQ

Original/reconstructed
raw signal

ATGACTA…
TGGAGGC…
GATCCGT…

Basecalling and consensus accuracy analysis  



Evaluation pipeline

• Human and 3 bacterial datasets for basecalling accuracy
• Use benchmark datasets with known ground-truth genome

• Bacterial datasets for consensus accuracy 
• Tested at multiple subsampling levels

• Tested all combinations of 
• Dataset
• Compressor
• Downstream tool

• Evaluated methylation accuracy and homopolymer accuracy 
• not discussed in this talk
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Basecalling accuracy
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Consensus accuracy
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Subsampling experiments
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Summary

• Achieve 35-50% reduction over best lossless compression
• Negligible loss in accuracy
• Consistent observations across datasets, coverage, downstream tools

• Highly practical
• LFZip simply reduces the data resolution
• Can be adopted at the nanopore sequencer device itself

• This is the first work on the topic, and much remains to be explored:
• Specialized lossy compressors for this data, retraining of downstream models
• Further evaluation on human data with improved benchmark datasets

• Evaluation scripts, data, plots:
https://github.com/shubhamchandak94/lossy_compression_evaluation
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https://github.com/shubhamchandak94/lossy_compression_evaluation


Publications: genomic data compression

• S. Chandak, K. Tatwawadi, S. Sridhar and T. Weissman; Impact of lossy 
compression of nanopore raw signal data on basecall and consensus 
accuracy, Bioinformatics 2020.
• S. Chandak, K. Tatwawadi, I. Ochoa, M. Hernaez and T. Weissman; 

SPRING: A next-generation compressor for FASTQ data, 
Bioinformatics 2019.
• S. Chandak, K. Tatwawadi and T. Weissman; Compression of genomic 

sequencing reads via hash-based reordering: algorithm and analysis, 
Bioinformatics 2018.
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Publications: Storage in DNA

• Journal paper in preparation.
• S. Chandak, J. Neu, K. Tatwawadi, J. Mardia, B. Lau, M. Kubit, R. 

Hulett, P. Griffin, M. Wootters, T. Weissman and H. Ji; “Overcoming 
high nanopore basecaller error rates for DNA storage via basecaller-
decoder integration and convolutional codes,” ICASSP 2020.
• S. Chandak, K. Tatwawadi, B. Lau, J. Mardia, M. Kubit, J. Neu, P. 

Griffin, M. Wootters, T. Weissman and H. Ji; “Improved read/write 
cost tradeoff in DNA-based data storage using LDPC codes,” Allerton 
2019.
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Publications: time series & multimedia compression

• R. Prabhakar, S. Chandak, C. Chiu, R. Liang, H. Nguyen, K. Tatwawadi
and T. Weissman; “Reducing latency and bandwidth for video 
streaming using keypoint extraction and digital puppetry,” DCC 2021.
• S. Chandak, K. Tatwawadi, C. Wen, L. Wang, J.A. Ojea and T. 

Weissman; “LFZip: Lossy compression of multivariate floating-point 
time series data via improved prediction,” DCC 2020.
• A. Bhown, S. Mukherjee, S. Yang, S. Chandak, I. Fischer-Hwang, K. 

Tatwawadi and T. Weissman; “Humans are still the best lossy image 
compressors,” DCC 2019.
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