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Genome sequencing

• Genome: long string of bases {A, C, G, T}
• Sequenced as noisy paired substrings (reads):

~ 300 – 500 bases ~ 100 –150 bases

Genome  ~ 3 billion bases
AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

Coverage/
Depth:

~30x-60x



Typical workflows

Sequencing Raw reads
Alignment 

to 
reference

Aligned 
reads

Variant 
calling w.r.t. 
reference

VCF 
(tabular 

data)

Sequencing Raw reads Assembly Assembled 
genome



Why store raw reads?

• Pipelines improve with time - need raw data for reanalysis
• For temporary storage - alignment and assembly time-consuming
• Can’t perform alignment when reference genome not available – e.g., 

de novo assembly or metagenomics
• Can get better compression than aligned data compression if 

significant variation from reference (more on this later)!



FASTQ format

We’ll mostly focus on reads in this talk.



Read compression
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Read compression

• For a typical 25x human dataset:
• Uncompressed:    79 GB (1 byte/base)
• Gzip: ~20 GB (2 bits/base) – still far from optimal

• Order of read pairs in FASTQ irrelevant – can this help? 
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Read compression results

Compressor 25x human 100x human

Uncompressed 79 GB 319 GB

Gzip ~20 GB ~80 GB

FaStore
(allow reordering) 6 GB 13.7 GB

SPRING
(no reordering) 3 GB 10 GB

SPRING
(allow reordering) 2 GB 5.7 GB

Łukasz Roguski, Idoia Ochoa, Mikel Hernaez, Sebastian Deorowicz; FaStore: a space-saving solution for raw sequencing data, Bioinformatics, Volume 34, 
Issue 16, 15 August 2018, Pages 2748–2756
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Key idea 

• Storing reads equivalent to
• Store genome
• Store read positions in genome (+ gap between paired reads)
• Store noise in reads

• Entropy calculations show this outperforms previous compressors 

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT



Key idea 

• But... How to get the genome from the reads?
• Genome assembly too expensive - big challenges:
• resolve repeats
• get very long pieces of genome from shorter assemblies

• Solution: Don’t need perfect assembly for compression!



SPRING workflow

Raw reads
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SPRING workflow

Approximate 
assembly

Raw reads

Encode

• Assembled sequence
• Read position in 

assembled sequence
• Gap b/w paired reads
• Noisy bases + positions
• Etc.

BSC

Compressed fileIn “allow reordering” mode: reorder by 
position in approximate assembly

https://github.com/IlyaGrebnov/libbsc

Contigs

https://github.com/IlyaGrebnov/libbsc
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Hamming distance
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• No index match found → shift search substring by one
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Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small 

Hamming distance
• Example (reads indexed by prefix for simplicity):
• ACGATCGTACGTACGATCGTCAG   (current read)
• GATCGTACGTATGATGGTCATTA (candidate next read)
• Next read found!

• Repeat process with the new read. 
• If no match found at any shift, pick arbitrary remaining read & start 

new contig 



Consensus + encoding stage (simplified)



Some technical details

• Hash 2 substrings per read to improve recall rate
• Handle reverse complement reads by searching both orientations
• Specialized hash table structure (BBHash) to reduce memory usage
• Utilize fact that all keys are known in advance

• Parallelized – each thread works on a different contig
• For reads that are left out in assembly step – try to realign with less 

strict threshold after consensus
• Several other heuristics to increase speed without sacrificing 

compression
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All human datasets. Sizes in GB. 
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Quality and read identifier compression

• Quality – use general purpose compressor BSC (optionally apply 
quantization)
• Read identifier – split into tokens and use arithmetic coding [1]

Dataset Reads Quality Read identifier

Hiseq 2000 28x, 100 bp x 2 4.3 23.8 0.9

Novaseq 25x, 150 bp x 2 3.0 3.6 0.3

Novaseq 25x, 150 bp x 2
(allow reordering)

2.0 3.6 1.4

All human datasets. Sizes in GB. 

1. Bonfield, James K., and Matthew V. Mahoney. "Compression of FASTQ and SAM format sequencing data." PloS one 8.3 
(2013): e59190.
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NovaSeq

SPRING
2 hours

7 GB lossless
SPRING
archive

BWA-MEM
alignment

(hg19)
8 hours

SAM file
Remove 

irrelevant fields
CRAM v3
25 min

(sorting)

Advantage can be even greater in 
case of large variations between 

reference genome & FASTQ genome.

Unsorted:          7.6 GB
Sorted: 7.8 GB
Sorted (+ embedded 
reference):        8.5 GB

*partly due to quality 
compression 

improvements in SPRING



Other approaches for FASTQ compression

• gzip/bzip2
• Context-based arithmetic coding: DSRC 2, Fqzcomp, Quip
• Assembly based: Leon, Quip, Assembletrie
• Reordering based:
• Reordering based on substrings/minimizers: Orcom, Mince, FaStore, SCALCE
• BWT-based reordering: BEETL

Numanagić, Ibrahim, et al. "Comparison of high-throughput sequencing data compression tools." Nature 
Methods 13.12 (2016): 1005.
Hernaez, Mikel, et al. "Genomic Data Compression." Annual Review of Biomedical Data Science 2 (2019).



Recent FASTQ compressors: FQSqueezer

• FQSqueezer [2]: Adapt general-purpose compressors such as 
prediction by partial matchting (PPM) and dynamic Markov coding 
(DMC) to read compression
• 10-30% improvement over SPRING for bacterial datasets

• But requires significantly more time and memory than SPRING
• Not tested on moderate to high coverage human datasets 

1. Deorowicz, Sebastian. "FQSqueezer: k-mer-based compression of sequencing data." bioRxiv (2019): 559807.



Recent FASTQ compressors: PgRC

Kowalski, Tomasz, and Szymon Piotr Grabowski. "Engineering the Compression of Sequencing Reads." bioRxiv (2020).

• Pseudogenome-based Read Compressor
• Similar framework as SPRING, but different “assembly” algorithm
• ~10-15% better compression than SPRING
• ~40% slower than SPRING
• Currently only supports read sequences 



Recent FASTQ compressors: alignment-based

• Setting: reference of same/related species available 
• Approach:

• Perform quick, inaccurate alignment
• Much faster than bwa mem or minimap

• Perform local assembly (optional)
• Perform reference-based encoding

• Results:
• Much better computational performance than SPRING
• Compression generally a bit worse (even worse when reference is included in size)

• References: 
• Jammula, Nagakishore, and Srinivas Aluru. "ParRefCom: Parallel Reference-based Compression of Paired-end Genomics Read 

Datasets." Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. 
2019.

• Enancio (acquired by Illumina) 



SPRING as a practical tool

• Easy to use with support for:
• Lossless and lossy modes
• Variable length reads, long reads, etc.
• Compressed in blocks to allow partial/streaming decompression
• Scalable to large datasets
• Gzipped I/O

• Github: https://github.com/shubhamchandak94/SPRING/

195 GB
25x human 

FASTQ

2 hours
32 GB RAM
8 threads

7 GB
SPRING
Archive 

(gzip: 36 GB)

26 minutes
6 GB RAM
8 threads

Original
FASTQ

https://github.com/shubhamchandak94/SPRING/
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• SPRING code: https://github.com/shubhamchandak94/Spring

• genie (open-source MPEG-G codec – under development): https://github.com/mitogen/genie

https://github.com/shubhamchandak94/Spring
https://github.com/mitogen/genie


Preliminary work: Noisy long read compression

• Joint work with Yifan Zhu 
• Building a compressor for noisy long reads (e.g., ONT, PacBio)
• Very similar approach as SPRING
• Much more challenging due to higher error rates (5-10%), including insertion 

and deletion errors

• Borrow ideas from assemblers but use approximations/heuristics to 
achieve >100x speedup
• Multi-stage filtering of reads: kmer-based search -> proper alignment
• Preliminary results encouraging, but need to scale up 
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Background

• (Oxford) nanopore sequencing gaining popularity
• Long reads -> better assembly , structural variant discovery
• Sequence native DNA and detect modifications
• Real-time & portable

• Sequencer generates raw current signal that is decoded to base 
sequence
• Often need to retain raw intermediate data for (re)analysis 
• Noisy – lossless compression difficult
• Typical human whole genome exp: terabytes of raw data – 10x more than 

base sequence



Oxford Nanopore Sequencing

• Nanopore sequencing: portable, real time

https://directorsblog.nih.gov/2018/02/06/sequencing-human-genome-with-pocket-sized-nanopore-device/

https://directorsblog.nih.gov/2018/02/06/sequencing-human-genome-with-pocket-sized-nanopore-device/


Nanopore Sequencing Process

Source: https://youtu.be/E9-Rm5AoZGw



Raw data format

• HDF5 file (“.fast5”) with signal stored as series of 16-bit integers
• 5-15 current samples per base -> ~18 bytes/base (uncompressed)
• VBZ: state-of-the-art lossless compressor
• Variable byte integer encoding followed by zstd
• 60% size reduction over uncompressed representation 
• Still require 1 TB for 30x human whole genome data



Evaluation pipeline: part 1

Note on lossy time-series compressors LFZip and SZ:
• Guarantee reconstruction at each time step is within 𝜖 of true value (𝜖 user defined parameter)
• Rely on simple prediction/quantization followed by entropy coding (gzip/bzip2/…)
• LFZip simply performs uniform scalar quantization (“rounding”) followed by entropy coding



Evaluation pipeline: part 2

Note: Attempt to “future-proof” by testing various tools/use cases 



Source: https://www.sciencedirect.com/science/article/pii/S2589004220303138 

Why consensus accuracy might 
differ from basecall (read) level 
accuracy:
systematic vs. random errors



Datasets

• Human and bacterial datasets for basecall accuracy
• Bacterial datasets for consensus accuracy 
• Human dataset with bisulfite benchmark for methylation accuracy



Basecall accuracy



Consensus accuracy



Subsampling experiments



Per-read methylation calling accuracy



Summary

• Lossy compression achieves 35-50% reduction over current best 
lossless compression:
• <0.2% reduction in basecall (read) accuracy
• <0.002% reduction in consensus accuracy (even better for high coverage)

• Highly practical – LFZip simply reduces the data resolution!
• Can be adopted at the nanopore sequencer device itself
• Similar to Illumina reducing quality score resolution from 40 to 4.

• Future work:
• Specialized lossy compressors for this data
• Further evaluation on human data with improved benchmark datasets



Availability

• Biorxiv: 
https://www.biorxiv.org/content/10.1101/2020.04.19.049262v3
• Evaluation scripts, data, plots:

https://github.com/shubhamchandak94/lossy_compression_evaluation



Thank you!


