
Genomic data compression
Shubham Chandak
Stanford University

Roche Seminar - Nov 13, 2020

Outline

• FASTQ compression – SPRING
• Introduction and motivation
• FASTQ format and compression results
• Algorithms - SPRING and others
• SPRING as a practical tool
• Next steps: preliminary work on noisy long read compression

• Lossy compression for nanopore raw signal data
• Background
• Evaluation pipeline
• Results

Outline

• FASTQ compression – SPRING
• Introduction and motivation
• FASTQ format and compression results
• Algorithms - SPRING and others
• SPRING as a practical tool
• Next steps: preliminary work on noisy long read compression

• Lossy compression for nanopore raw signal data
• Background
• Evaluation pipeline
• Results

Joint work with

• Kedar Tatwawadi, Stanford University
• Idoia Ochoa, UIUC
• Mikel Hernaez, UIUC
• Tsachy Weissman, Stanford University

Genome sequencing

• Genome: long string of bases {A, C, G, T}
• Sequenced as noisy paired substrings (reads):

~ 300 – 500 bases ~ 100 –150 bases

Genome ~ 3 billion bases
AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

Coverage/
Depth:

~30x-60x

Typical workflows

Sequencing Raw reads
Alignment

to
reference

Aligned
reads

Variant
calling w.r.t.
reference

VCF
(tabular

data)

Sequencing Raw reads Assembly Assembled
genome

Why store raw reads?

• Pipelines improve with time - need raw data for reanalysis
• For temporary storage - alignment and assembly time-consuming
• Can’t perform alignment when reference genome not available – e.g.,

de novo assembly or metagenomics
• Can get better compression than aligned data compression if

significant variation from reference (more on this later)!

FASTQ format

We’ll mostly focus on reads in this talk.

Read compression

Read compression

• For a typical 25x human dataset:
• Uncompressed: 79 GB (1 byte/base)

Read compression

• For a typical 25x human dataset:
• Uncompressed: 79 GB (1 byte/base)
• Gzip: ~20 GB (2 bits/base) – still far from optimal

Read compression

• For a typical 25x human dataset:
• Uncompressed: 79 GB (1 byte/base)
• Gzip: ~20 GB (2 bits/base) – still far from optimal

• Order of read pairs in FASTQ irrelevant – can this help?

Read compression results

Compressor 25x human

Uncompressed 79 GB

Gzip ~20 GB

Read compression results

Compressor 25x human

Uncompressed 79 GB

Gzip ~20 GB

FaStore
(allow reordering) 6 GB

Łukasz Roguski, Idoia Ochoa, Mikel Hernaez, Sebastian Deorowicz; FaStore: a space-saving solution for raw sequencing data, Bioinformatics, Volume 34,
Issue 16, 15 August 2018, Pages 2748–2756

Read compression results

Compressor 25x human

Uncompressed 79 GB

Gzip ~20 GB

FaStore
(allow reordering) 6 GB

SPRING
(no reordering) 3 GB

SPRING
(allow reordering) 2 GB

Łukasz Roguski, Idoia Ochoa, Mikel Hernaez, Sebastian Deorowicz; FaStore: a space-saving solution for raw sequencing data, Bioinformatics, Volume 34,
Issue 16, 15 August 2018, Pages 2748–2756

Read compression results

Compressor 25x human 100x human

Uncompressed 79 GB 319 GB

Gzip ~20 GB ~80 GB

FaStore
(allow reordering) 6 GB 13.7 GB

SPRING
(no reordering) 3 GB 10 GB

SPRING
(allow reordering) 2 GB 5.7 GB

Łukasz Roguski, Idoia Ochoa, Mikel Hernaez, Sebastian Deorowicz; FaStore: a space-saving solution for raw sequencing data, Bioinformatics, Volume 34,
Issue 16, 15 August 2018, Pages 2748–2756

Key idea

• Storing reads equivalent to

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

Key idea

• Storing reads equivalent to
• Store genome

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

Key idea

• Storing reads equivalent to
• Store genome
• Store read positions in genome (+ gap between paired reads)

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

Key idea

• Storing reads equivalent to
• Store genome
• Store read positions in genome (+ gap between paired reads)
• Store noise in reads

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

Key idea

• Storing reads equivalent to
• Store genome
• Store read positions in genome (+ gap between paired reads)
• Store noise in reads

• Entropy calculations show this outperforms previous compressors

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

Key idea

• But... How to get the genome from the reads?
• Genome assembly too expensive - big challenges:
• resolve repeats
• get very long pieces of genome from shorter assemblies

• Solution: Don’t need perfect assembly for compression!

SPRING workflow

Raw reads

SPRING workflow

Approximate
assembly

Raw reads

Contigs

SPRING workflow

Approximate
assembly

Raw reads

Encode

• Assembled sequence
• Read position in

assembled sequence
• Gap b/w paired reads
• Noisy bases + positions
• Etc.

Contigs

SPRING workflow

Approximate
assembly

Raw reads

Encode

• Assembled sequence
• Read position in

assembled sequence
• Gap b/w paired reads
• Noisy bases + positions
• Etc.

BSC

Compressed file

https://github.com/IlyaGrebnov/libbsc

Contigs

https://github.com/IlyaGrebnov/libbsc

SPRING workflow

Approximate
assembly

Raw reads

Encode

• Assembled sequence
• Read position in

assembled sequence
• Gap b/w paired reads
• Noisy bases + positions
• Etc.

BSC

Compressed fileIn “allow reordering” mode: reorder by
position in approximate assembly

https://github.com/IlyaGrebnov/libbsc

Contigs

https://github.com/IlyaGrebnov/libbsc

Approx. assembly/reordering step (simplified)

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small

Hamming distance

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small

Hamming distance
• Example (reads indexed by prefix for simplicity):
• ACGATCGTACGTACGATCGTCAG (current read)

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small

Hamming distance
• Example (reads indexed by prefix for simplicity):
• ACGATCGTACGTACGATCGTCAG (current read)
• ACGATCGTACGTATACGGGTACG (candidate next read)

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small

Hamming distance
• Example (reads indexed by prefix for simplicity):
• ACGATCGTACGTACGATCGTCAG (current read)
• ACGATCGTACGTATACGGGTACG (candidate next read)
• Index match found but Hamming distance too large → shift search substring

by one

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small

Hamming distance
• Example (reads indexed by prefix for simplicity):
• ACGATCGTACGTACGATCGTCAG (current read)

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small

Hamming distance
• Example (reads indexed by prefix for simplicity):
• ACGATCGTACGTACGATCGTCAG (current read)

• No index match found → shift search substring by one

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small

Hamming distance
• Example (reads indexed by prefix for simplicity):
• ACGATCGTACGTACGATCGTCAG (current read)
• GATCGTACGTATGATGGTCATTA (candidate next read)

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small

Hamming distance
• Example (reads indexed by prefix for simplicity):
• ACGATCGTACGTACGATCGTCAG (current read)
• GATCGTACGTATGATGGTCATTA (candidate next read)
• Next read found!

• Repeat process with the new read

Approx. assembly/reordering step (simplified)

• Index reads by specific substrings using hash tables
• For the current read, try to find an overlapping read within small

Hamming distance
• Example (reads indexed by prefix for simplicity):
• ACGATCGTACGTACGATCGTCAG (current read)
• GATCGTACGTATGATGGTCATTA (candidate next read)
• Next read found!

• Repeat process with the new read.
• If no match found at any shift, pick arbitrary remaining read & start

new contig

Consensus + encoding stage (simplified)

Some technical details

• Hash 2 substrings per read to improve recall rate
• Handle reverse complement reads by searching both orientations
• Specialized hash table structure (BBHash) to reduce memory usage
• Utilize fact that all keys are known in advance

• Parallelized – each thread works on a different contig
• For reads that are left out in assembly step – try to realign with less

strict threshold after consensus
• Several other heuristics to increase speed without sacrificing

compression

Quality and read identifier compression

Quality and read identifier compression

• Quality – use general purpose compressor BSC (optionally apply
quantization)
• Read identifier – split into tokens and use arithmetic coding [1]

1. Bonfield, James K., and Matthew V. Mahoney. "Compression of FASTQ and SAM format sequencing data." PloS one 8.3
(2013): e59190.

Quality and read identifier compression

• Quality – use general purpose compressor BSC (optionally apply
quantization)
• Read identifier – split into tokens and use arithmetic coding [1]

Dataset Reads Quality Read identifier

Hiseq 2000 28x, 100 bp x 2 4.3 23.8 0.9

Novaseq 25x, 150 bp x 2 3.0 3.6 0.3

All human datasets. Sizes in GB.

1. Bonfield, James K., and Matthew V. Mahoney. "Compression of FASTQ and SAM format sequencing data." PloS one 8.3
(2013): e59190.

Quality and read identifier compression

• Quality – use general purpose compressor BSC (optionally apply
quantization)
• Read identifier – split into tokens and use arithmetic coding [1]

Dataset Reads Quality Read identifier

Hiseq 2000 28x, 100 bp x 2 4.3 23.8 0.9

Novaseq 25x, 150 bp x 2 3.0 3.6 0.3

Novaseq 25x, 150 bp x 2
(allow reordering)

2.0 3.6 1.4

All human datasets. Sizes in GB.

1. Bonfield, James K., and Matthew V. Mahoney. "Compression of FASTQ and SAM format sequencing data." PloS one 8.3
(2013): e59190.

SPRING vs. reference-based compression
195 GB

25x human
FASTQ

NovaSeq

SPRING vs. reference-based compression
195 GB

25x human
FASTQ

NovaSeq

SPRING
2 hours

7 GB lossless
SPRING
archive

SPRING vs. reference-based compression
195 GB

25x human
FASTQ

NovaSeq

SPRING
2 hours

7 GB lossless
SPRING
archive

BWA-MEM
alignment

(hg19)
8 hours

SAM file
Remove

irrelevant fields
(sorting)

SPRING vs. reference-based compression
195 GB

25x human
FASTQ

NovaSeq

SPRING
2 hours

7 GB lossless
SPRING
archive

BWA-MEM
alignment

(hg19)
8 hours

SAM file
Remove

irrelevant fields
CRAM v3
25 min

(sorting)

Unsorted: 7.6 GB
Sorted: 7.8 GB
Sorted (+ embedded
reference): 8.5 GB

*partly due to quality
compression

improvements in SPRING

SPRING vs. reference-based compression
195 GB

25x human
FASTQ

NovaSeq

SPRING
2 hours

7 GB lossless
SPRING
archive

BWA-MEM
alignment

(hg19)
8 hours

SAM file
Remove

irrelevant fields
CRAM v3
25 min

(sorting)

Advantage can be even greater in
case of large variations between

reference genome & FASTQ genome.

Unsorted: 7.6 GB
Sorted: 7.8 GB
Sorted (+ embedded
reference): 8.5 GB

*partly due to quality
compression

improvements in SPRING

Other approaches for FASTQ compression

• gzip/bzip2
• Context-based arithmetic coding: DSRC 2, Fqzcomp, Quip
• Assembly based: Leon, Quip, Assembletrie
• Reordering based:
• Reordering based on substrings/minimizers: Orcom, Mince, FaStore, SCALCE
• BWT-based reordering: BEETL

Numanagić, Ibrahim, et al. "Comparison of high-throughput sequencing data compression tools." Nature
Methods 13.12 (2016): 1005.
Hernaez, Mikel, et al. "Genomic Data Compression." Annual Review of Biomedical Data Science 2 (2019).

Recent FASTQ compressors: FQSqueezer

• FQSqueezer [2]: Adapt general-purpose compressors such as
prediction by partial matchting (PPM) and dynamic Markov coding
(DMC) to read compression
• 10-30% improvement over SPRING for bacterial datasets

• But requires significantly more time and memory than SPRING
• Not tested on moderate to high coverage human datasets

1. Deorowicz, Sebastian. "FQSqueezer: k-mer-based compression of sequencing data." bioRxiv (2019): 559807.

Recent FASTQ compressors: PgRC

Kowalski, Tomasz, and Szymon Piotr Grabowski. "Engineering the Compression of Sequencing Reads." bioRxiv (2020).

• Pseudogenome-based Read Compressor
• Similar framework as SPRING, but different “assembly” algorithm
• ~10-15% better compression than SPRING
• ~40% slower than SPRING
• Currently only supports read sequences

Recent FASTQ compressors: alignment-based

• Setting: reference of same/related species available
• Approach:

• Perform quick, inaccurate alignment
• Much faster than bwa mem or minimap

• Perform local assembly (optional)
• Perform reference-based encoding

• Results:
• Much better computational performance than SPRING
• Compression generally a bit worse (even worse when reference is included in size)

• References:
• Jammula, Nagakishore, and Srinivas Aluru. "ParRefCom: Parallel Reference-based Compression of Paired-end Genomics Read

Datasets." Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics.
2019.

• Enancio (acquired by Illumina)

SPRING as a practical tool

• Easy to use with support for:
• Lossless and lossy modes
• Variable length reads, long reads, etc.
• Compressed in blocks to allow partial/streaming decompression
• Scalable to large datasets
• Gzipped I/O

• Github: https://github.com/shubhamchandak94/SPRING/

195 GB
25x human

FASTQ

2 hours
32 GB RAM
8 threads

7 GB
SPRING
Archive

(gzip: 36 GB)

26 minutes
6 GB RAM
8 threads

Original
FASTQ

https://github.com/shubhamchandak94/SPRING/

References

• Shubham Chandak, Kedar Tatwawadi, Tsachy Weissman; Compression of genomic sequencing
reads via hash-based reordering: algorithm and analysis, Bioinformatics, Volume 34, Issue 4, 15
February 2018, Pages 558–567

• Shubham Chandak, Kedar Tatwawadi, Idoia Ochoa, Mikel Hernaez, Tsachy Weissman; SPRING: a
next-generation compressor for FASTQ data, Bioinformatics, bty1015

• SPRING code: https://github.com/shubhamchandak94/Spring

• genie (open-source MPEG-G codec – under development): https://github.com/mitogen/genie

https://github.com/shubhamchandak94/Spring
https://github.com/mitogen/genie

Preliminary work: Noisy long read compression

• Joint work with Yifan Zhu
• Building a compressor for noisy long reads (e.g., ONT, PacBio)
• Very similar approach as SPRING
• Much more challenging due to higher error rates (5-10%), including insertion

and deletion errors

• Borrow ideas from assemblers but use approximations/heuristics to
achieve >100x speedup
• Multi-stage filtering of reads: kmer-based search -> proper alignment
• Preliminary results encouraging, but need to scale up

Outline

• FASTQ compression – SPRING
• Introduction and motivation
• FASTQ format and compression results
• Algorithms - SPRING and others
• SPRING as a practical tool
• Next steps: preliminary work on noisy long read compression

• Lossy compression for nanopore raw signal data
• Background
• Evaluation pipeline
• Results

Background

• (Oxford) nanopore sequencing gaining popularity
• Long reads -> better assembly , structural variant discovery
• Sequence native DNA and detect modifications
• Real-time & portable

• Sequencer generates raw current signal that is decoded to base
sequence
• Often need to retain raw intermediate data for (re)analysis
• Noisy – lossless compression difficult
• Typical human whole genome exp: terabytes of raw data – 10x more than

base sequence

Oxford Nanopore Sequencing

• Nanopore sequencing: portable, real time

https://directorsblog.nih.gov/2018/02/06/sequencing-human-genome-with-pocket-sized-nanopore-device/

https://directorsblog.nih.gov/2018/02/06/sequencing-human-genome-with-pocket-sized-nanopore-device/

Nanopore Sequencing Process

Source: https://youtu.be/E9-Rm5AoZGw

Raw data format

• HDF5 file (“.fast5”) with signal stored as series of 16-bit integers
• 5-15 current samples per base -> ~18 bytes/base (uncompressed)
• VBZ: state-of-the-art lossless compressor
• Variable byte integer encoding followed by zstd
• 60% size reduction over uncompressed representation
• Still require 1 TB for 30x human whole genome data

Evaluation pipeline: part 1

Note on lossy time-series compressors LFZip and SZ:
• Guarantee reconstruction at each time step is within 𝜖 of true value (𝜖 user defined parameter)
• Rely on simple prediction/quantization followed by entropy coding (gzip/bzip2/…)
• LFZip simply performs uniform scalar quantization (“rounding”) followed by entropy coding

Evaluation pipeline: part 2

Note: Attempt to “future-proof” by testing various tools/use cases

Source: https://www.sciencedirect.com/science/article/pii/S2589004220303138

Why consensus accuracy might
differ from basecall (read) level
accuracy:
systematic vs. random errors

Datasets

• Human and bacterial datasets for basecall accuracy
• Bacterial datasets for consensus accuracy
• Human dataset with bisulfite benchmark for methylation accuracy

Basecall accuracy

Consensus accuracy

Subsampling experiments

Per-read methylation calling accuracy

Summary

• Lossy compression achieves 35-50% reduction over current best
lossless compression:
• <0.2% reduction in basecall (read) accuracy
• <0.002% reduction in consensus accuracy (even better for high coverage)

• Highly practical – LFZip simply reduces the data resolution!
• Can be adopted at the nanopore sequencer device itself
• Similar to Illumina reducing quality score resolution from 40 to 4.

• Future work:
• Specialized lossy compressors for this data
• Further evaluation on human data with improved benchmark datasets

Availability

• Biorxiv:
https://www.biorxiv.org/content/10.1101/2020.04.19.049262v3
• Evaluation scripts, data, plots:

https://github.com/shubhamchandak94/lossy_compression_evaluation

Thank you!

