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Genome sequencing

 Genome: long string of bases {A, C, G, T}

e Sequenced as noisy paired substrings (reads):

Genome ~ 3 billion bases -

AACGATGTCGTATATCGTAGTAGCIICTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

A
v

~ 300 - 500 bases

~ 100 —150 bases

1
Coverage/
Depth:
~30x-60x




Typical workflows

Variant VCF
calling w.r.t. (tabular
reference data)

Alignment
Seqguencing Raw reads to
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Aligned
reads

Assembled
genome

Sequencing EVVAGELE Assembly




Why store raw reads?

* Pipelines improve with time - need raw data for reanalysis
* For temporary storage - alignment and assembly time-consuming

* Can’t perform alignment when reference genome not available — e.g.,
de novo assembly or metagenomics

e Can get better compression than aligned data compression if
significant variation from reference (more on this later)!



FASTQ format

File 1 Read

@ERR174324.1 HSQ1009_86:1:1101:1192:2116/1
ATTCNGTCACTTCTCACCAGGCCCCTCATTCAACACTGGGAATTAAAATTCGAC. ..

+
CCCF#2ADHHHHHJJJIJJJJIJJIJIIJIIIGIJTIIIIIIIIIIIIITIIIIGIIT. ..

Quality scores

File 2 i ifi
/ Read identifier

@ERR174324.2 HSQ1009_86:1:1101:1192:2116/2
CAGANAGAGACTCTGTCTCAAAAAAACAAACAAACAAACAAACAAAAAGTCTTA. ..

+
CCCF#2ADHFHHHJIJJJJJJJJJJIIJIIJIIJIIJIIJIIJIJHIIIIIIIITIIIIIIT. ..

We’ll mostly focus on reads in this talk.
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Read compression

* For a typical 25x human dataset:
* Uncompressed:

* Gzip:

o U b W N B

79 GB (1 byte/base)

~20 GB (2 bits/base) — still far from optimal
* Order of read pairs in FASTQ irrelevant — can this help?

Original order in FASTQ

2

u W b R O

New order (preserves read pairing
but pairs ordered arbitrarily)
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Issue 16, 15 August 2018, Pages 2748-2756
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Read compression results

Uncompressed 79 GB 319 GB
Gzip ~20 GB ~80 GB
Fastore 6 GB 13.7 GB
(allow reordering)
SPRING. 3 GB 10 GB
(no reordering)
SPRING 2 GB 5.7 GB

(allow reordering)

tukasz Roguski, Idoia Ochoa, Mikel Hernaez, Sebastian Deorowicz; FaStore: a space-saving solution for raw sequencing data, Bioinformatics, Volume 34,
Issue 16, 15 August 2018, Pages 2748-2756
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Key idea

AACGATGTCGTATATCGTAGTAGCTCTATGTTCTCATTAGCTCGCTAGTAGCTATGCTCTAATGCTAT

 Storing reads equivalent to
* Store genome
 Store read positions in genome (+ gap between paired reads)
* Store noise in reads

* Entropy calculations show this outperforms previous compressors



Key idea

e But... How to get the genome from the reads?

* Genome assembly too expensive - big challenges:
* resolve repeats
» get very long pieces of genome from shorter assemblies

 Solution: Don’t need perfect assembly for compression!



SPRING workflow

Raw reads



SPRING workflow

Contigs
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SPRING workflow

Raw reads

Approximate

assembl

Contigs

Assembled sequence
Read position in
assembled sequence
Gap b/w paired reads
Noisy bases + positions
Etc.



SPRING workflow

Contigs
f * Assembled sequence
* Read position in
Approximate I assembled sequence
assembl * Gap b/w paired reads
S R * Noisy bases + positions
* Etc.
Raw reads 4..
|
—

Compressed file

https://github.com/llyaGrebnov/libbsc



https://github.com/IlyaGrebnov/libbsc

SPRING workflow

Contigs
f * Assembled sequence
* Read position in
Approximate I assembled sequence
assembl * Gap b/w paired reads
S R * Noisy bases + positions
* Etc.
Raw reads .
|
—

In “allow reordering” mode: reorder by Cempesseel i

position in approximate assembly

https://github.com/llyaGrebnov/libbsc
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* Index reads by specific substrings using hash tables

* For the current read, try to find an overlapping read within small
Hamming distance

* Example (reads indexed by prefix for simplicity):
ACGATCGTCAG (current read)
ATACGGGTACG (candidate next read)



Approx. assembly/reordering step (simplified)

* Index reads by specific substrings using hash tables

* For the current read, try to find an overlapping read within small
Hamming distance

* Example (reads indexed by prefix for simplicity):
ACGATCGTCAG (current read)
ATACGGGTACG (candidate next read)

* Index match found but Hamming distance too large = shift search substring
by one



Approx. assembly/reordering step (simplified)

* Index reads by specific substrings using hash tables

* For the current read, try to find an overlapping read within small
Hamming distance

* Example (reads indexed by prefix for simplicity):
e A CGATCGTCAG (current read)



Approx. assembly/reordering step (simplified)

* Index reads by specific substrings using hash tables

* For the current read, try to find an overlapping read within small
Hamming distance

* Example (reads indexed by prefix for simplicity):
e A CGATCGTCAG (current read)

* No index match found = shift search substring by one



Approx. assembly/reordering step (simplified)

* Index reads by specific substrings using hash tables

* For the current read, try to find an overlapping read within small
Hamming distance

* Example (reads indexed by prefix for simplicity):
« AC GATCGTCAG (current read)
. GATGGTCATTA (candidate next read)
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Approx. assembly/reordering step (simplified)

* Index reads by specific substrings using hash tables

* For the current read, try to find an overlapping read within small
Hamming distance

* Example (reads indexed by prefix for simplicity):
« AC GATCGTCAG (current read)
. GATGGTCATTA (candidate next read)
* Next read found!

* Repeat process with the new read.

* If no match found at any shift, pick arbitrary remaining read & start
new contig



Consensus + encoding stage (simplified)

pos noise
ACTGCTEGCTGCTGATAGC 0 GT
CTECTAGCTGCTGACAGCC 1 C
GCTAGCTACTGOCAGCCTA 3 A
GCTEGCTACTGHCEGCCTA 3 CATC

Majorityﬂ

ACTGCTAGCTGCTGCCAGCCTA [y  Seq
(Reference Sequence)

noisepos
7,16
3

8
4,8,12,14

7,9
: 3
Delta
encoding 8§
4,4,4,72



Some technical details

* Hash 2 substrings per read to improve recall rate
* Handle reverse complement reads by searching both orientations

 Specialized hash table structure (BBHash) to reduce memory usage
 Utilize fact that all keys are known in advance

* Parallelized — each thread works on a different contig

* For reads that are left out in assembly step — try to realign with less
strict threshold after consensus

* Several other heuristics to increase speed without sacrificing
compression



Quality and read identifier compression



Quality and read identifier compression

* Quality — use general purpose compressor BSC (optionally apply
guantization)

* Read identifier — split into tokens and use arithmetic coding [1]

1. Bonfield, James K., and Matthew V. Mahoney. "Compression of FASTQ and SAM format sequencing data." PloS one 8.3
(2013): €59190.



Quality and read identifier compression

e Quality — use general purpose compressor BSC (optionally apply
guantization)

* Read identifier — split into tokens and use arithmetic coding [1]

Hiseq 2000 28x, 100 bp x 2 23.8
Novaseq 25x, 150 bp x 2 3.0 3.6 0.3

All human datasets. Sizes in GB.

1. Bonfield, James K., and Matthew V. Mahoney. "Compression of FASTQ and SAM format sequencing data." PloS one 8.3
(2013): €59190.



Quality and read identifier compression

e Quality — use general purpose compressor BSC (optionally apply
guantization)

* Read identifier — split into tokens and use arithmetic coding [1]

Hiseq 2000 28x, 100 bp x 2 23.8
Novaseq 25x, 150 bp x 2 3.0 3.6 0.3
Novaseq 25x, 150 bp x 2 2.0 3.6 1.4

(allow reordering)

All human datasets. Sizes in GB.

1. Bonfield, James K., and Matthew V. Mahoney. "Compression of FASTQ and SAM format sequencing data." PloS one 8.3
(2013): €59190.
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SPRING vs. reference-based compression

195 GB
25x human
FASTQ
NovaSeq

BWA-MEM
alignment
(hg19)
8 hours

SAM file

Remove
irrelevant fields

7 GB lossless
SPRING

archive

Advantage can be even greater in
case of large variations between
reference genome & FASTQ genome.

Unsorted: 7.6 GB
Sorted: 7.8 GB
Sorted (+ embedded
reference): 8.5 GB
*partly due to quality
compression
improvements in SPRING




Other approaches for FASTQ compression

* gzip/bzip?2
* Context-based arithmetic coding: DSRC 2, Fqzcomp, Quip
* Assembly based: Leon, Quip, Assembletrie

* Reordering based:
* Reordering based on substrings/minimizers: Orcom, Mince, FaStore, SCALCE
* BWT-based reordering: BEETL

Numanagic, Ibrahim, et al. "Comparison of high-throughput sequencing data compression tools." Nature
Methods 13.12 (2016): 1005.
Hernaez, Mikel, et al. "Genomic Data Compression." Annual Review of Biomedical Data Science 2 (2019).



Recent FASTQ compressors: FQSqueezer

* FQSqueezer [2]: Adapt general-purpose compressors such as
prediction by partial matchting (PPM) and dynamic Markov coding
(DMC) to read compression

* 10-30% improvement over SPRING for bacterial datasets

* But requires significantly more time and memory than SPRING
* Not tested on moderate to high coverage human datasets

1. Deorowicz, Sebastian. "FQSqueezer: k-mer-based compression of sequencing data." bioRxiv (2019): 559807.



Recent FASTQ compressors: PgRC

* Pseudogenome-based Read Compressor

* Similar framework as SPRING, but different “assembly” algorithm
e ¥10-15% better compression than SPRING

* ~40% slower than SPRING

* Currently only supports read sequences

Kowalski, Tomasz, and Szymon Piotr Grabowski. "Engineering the Compression of Sequencing Reads." bioRxiv (2020).



Recent FASTQ compressors: alignment-based

 Setting: reference of same/related species available
e Approach:

e Perform quick, inaccurate alignment

* Much faster than bwa mem or minimap
* Perform local assembly (optional)
* Perform reference-based encoding

e Results:

 Much better computational performance than SPRING
 Compression generally a bit worse (even worse when reference is included in size)

 References:

e Jammula, Nagakishore, and Srinivas Aluru. "ParRefCom: Parallel Reference-based Compression of Paired-end Genomics Read
Datasets." Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics.
2019.

* Enancio (acquired by lllumina)



SPRING as a practical tool

195 GB 2 hours SIZR?I\?G 26 minutes
25x human 32 GB RAM . 6 GB RAM
Archive

Original

FASTQ

FAST h h
STQ 8 threads (gzip: 36 GB) 8 threads

* Easy to use with support for:
* Lossless and lossy modes
* Variable length reads, long reads, etc.
* Compressed in blocks to allow partial/streaming decompression
* Scalable to large datasets
e Gzipped 1/O

e Github: https://github.com/shubhamchandak94/SPRING/



https://github.com/shubhamchandak94/SPRING/

References

e Shubham Chandak, Kedar Tatwawadi, Tsachy Weissman; Compression of genomic sequencing
reads via hash-based reordering: algorithm and analysis, Bioinformatics, Volume 34, Issue 4, 15
February 2018, Pages 558-567

e Shubham Chandak, Kedar Tatwawadi, Idoia Ochoa, Mikel Hernaez, Tsachy Weissman; SPRING: a
next-generation compressor for FASTQ data, Bioinformatics, bty1015

* SPRING code: https://github.com/shubhamchandak94/Spring

» genie (open-source MPEG-G codec — under development): https://github.com/mitogen/genie

07,0
~MPEG-0



https://github.com/shubhamchandak94/Spring
https://github.com/mitogen/genie

Preliminary work: Noisy long read compression

* Joint work with Yifan Zhu
* Building a compressor for noisy long reads (e.g., ONT, PacBio)
* Very similar approach as SPRING

 Much more challenging due to higher error rates (5-10%), including insertion
and deletion errors

* Borrow ideas from assemblers but use approximations/heuristics to
achieve >100x speedup

* Multi-stage filtering of reads: kmer-based search -> proper alignment
* Preliminary results encouraging, but need to scale up



Outline

* Lossy compression for nanopore raw signal data
* Background
* Evaluation pipeline
* Results



Impact of lossy compression of hanopore raw
signal data on basecalling and consensus

accuracy

Shubham Chandak *, Kedar Tatwawadi, Srivatsan Sridhar and Tsachy
Weissman*



Background

* (Oxford) nanopore sequencing gaining popularity
* Long reads -> better assembly, structural variant discovery
* Sequence native DNA and detect modifications
e Real-time & portable

e Sequencer generates raw current signal that is decoded to base
sequence
e Often need to retain raw intermediate data for (re)analysis
* Noisy — lossless compression difficult

e Typical human whole genome exp: terabytes of raw data — 10x more than
base sequence



Oxford Nanopore Sequencing

* Nanopore sequencing: portable, real time

https://directorsblog.nih.gov/2018/02/06/sequencing-human-genome-with-pocket-sized-nanopore-device/



https://directorsblog.nih.gov/2018/02/06/sequencing-human-genome-with-pocket-sized-nanopore-device/

Nanopore Sequencing Process

N2

:

GGTTGTTTCTGTTGGTGCTGATAT SCTTAAG/ AGCC/

e |

Source: https://youtu.be/E9-Rm5A0ZGw



Raw data format

* HDF5 file (“.fast5”) with signal stored as series of 16-bit integers
* 5-15 current samples per base -> ~18 bytes/base (uncompressed)

e \V/BZ: state-of-the-art lossless compressor
* Variable byte integer encoding followed by zstd
* 60% size reduction over uncompressed representation
* Still require 1 TB for 30x human whole genome data



Evaluation pipeline: part 1

‘ W 1 Original
. raw signal

Lossy compression
Raw current | (LFZip and S$Z) with R
signal data | range of distortion Reconstructed
parameter values raw signal
Lossless VBZ . Record
compression compressed
sizes

(a) Lossless and lossy compression of raw signal data

Note on lossy time-series compressors LFZip and SZ:

* Guarantee reconstruction at each time step is within € of true value (€ user defined parameter)
* Rely on simple prediction/quantization followed by entropy coding (gzip/bzip2/...)

e LFZip simply performs uniform scalar quantization (“rounding”) followed by entropy coding



Evaluation pipeline: part 2

Original/reconstructed Basecalled P > Assembly,
raw signal Basecallingand | .45 in FASTQ consensus,
» read accuracy > polishing and
W evaluation ATGACTA... v ,| Subsample | accuracy evaluation
TGGAGGC... FASTQ
Basecallers: GATCCGT... Stage 1: Flye
l Guppy (HAC) Stage 2: Rebaler
MethYIation Guppy (Fast) Stage 3: Medaka
calling and Bonito
evaluation
Megalodon

(b) Basecalling, consensus and methylation calling accuracy analysis

Note: Attempt to “future-proof” by testing various tools/use cases



Raw Reads Draft Assembly

Why consensus accuracy might /\\\
differ from basecall (read) level —_— \
accuracy:

systematic vs. random errors

CONNET

f
|
|
|
|
, N

Polished Consensus e—— ) e Q) =i

Source: https://www.sciencedirect.com/science/article/pii/S2589004220303138




Datasets

* Human and bacterial datasets for basecall accuracy

* Bacterial datasets for consensus accuracy
* Human dataset with bisulfite benchmark for methylation accuracy

Genome Flowcell | Read Read length Approx.

Speci S 1 GC-content
pecies ample size (bp) conten type count N50 (bp) depth

Staphylococcus aureus | CAS38_02  2.9x10° 32.8% R9.4.1 | 11,047 24,666 83x
Klebsiella pneumoniae INFO032 5.1x106 57.6% R9.4 15,154 37,181 108x
Escherichia coli K-12 MG1655 4.6x10° 50.8% R10.3 | 92,000 7,431 128x
Homo sapiens NA12878 3.1x10° 40.9% R94 |[128,314 11,404 0.29x




Basecall Qscore

Basecall accuracy

Basecall accuracy vs. compressed size across basecallers
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Consensus Qscore

Consensus dCCUracy

37.0 99.980
- LAl b .4 e :( 19 == ~
36.0 x .X ’:Q .. e X o x x 99.975
3551 % ¥ % e v - 99.972
¢ &
35.0 A - 99.968
X0
34.5 - - 99.965
34.0 4 - 99.960
33.5 - - 99.955
33.0 A - 99.950
32.5 A - 99.944
32.0 A - 99.937
31.5 - - 99.929
o o, ® x X X ®
31.0 - X o W% OX X T3 o ® = {99.921
X0
30.5 -I T T T T T T T T T T T - 99.911
0.30 035 040 045 050 0.55 0.60 0.65 0.75 0.90 0.95 1.00

Relative compressed size (1=lossless)

©

® 00X X X EHER

lossless, guppy_hac
lossless, bonito
lossless, guppy_fast
LFZip, guppy_hac
LFZip, bonito

LFZip, guppy_fast
SZ, guppy_hac

SZ, bonito

SZ, guppy_fast



Subsampling experiments
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Per-read methylation calling accuracy

AUC
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Summary

* Lossy compression achieves 35-50% reduction over current best
lossless compression:

e <0.2% reduction in basecall (read) accuracy
* <0.002% reduction in consensus accuracy (even better for high coverage)

* Highly practical — LFZip simply reduces the data resolution!

* Can be adopted at the nanopore sequencer device itself
e Similar to lllumina reducing quality score resolution from 40 to 4.

 Future work:

* Specialized lossy compressors for this data
* Further evaluation on human data with improved benchmark datasets



Availability

* Biorxiv:
https://www.biorxiv.org/content/10.1101/2020.04.19.049262v3

* Evaluation scripts, data, plots:
https://github.com/shubhamchandak94/lossy compression_evaluation



Thank youl!



